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ABSTRACT 
On the desktop, an application can expect to control its user 
interface down to the last pixel, but on the World Wide 
Web, a content provider has no control over how the client 
will view the page, once delivered to the browser. This cre-
ates an opportunity for end-users who want to automate and 
customize their web experiences, but the growing complex-
ity of web pages and standards prevents most users from 
realizing this opportunity. We describe Chickenfoot, a pro-
gramming system embedded in the Firefox web browser, 
which enables end-users to automate, customize, and inte-
grate web applications without examining their source code. 
One way Chickenfoot addresses this goal is a novel tech-
nique for identifying page components by keyword pattern 
matching.  We motivate this technique by studying how 
users name web page components, and present a heuristic 
keyword matching algorithm that identifies the desired 
component from the user’s name. 

ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces; 
D.3.3 [Programming Languages]: Language Constructs and 
Features; D.2.6 [Programming Environments]: Interactive 
environments; H.5.2 [User Interfaces]: User-centered de-
sign. 

General terms: Design, Algorithms, Experimentation, 
Human Factors, Languages. 
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INTRODUCTION 
The World Wide Web has become a preferred platform for 
many kinds of application development. Over the past dec-
ade, applications which formerly would have been designed 
for the desktop — calendars, travel reservation systems, 
purchasing systems, library card catalogs, map viewers, 
crossword puzzles,  and even Tetris — have made the tran-
sition to the Web, largely successfully.  

The migration of applications to the Web opens up new 
opportunities for user interface customization. Applications 

that would have been uncustomizable on the desktop sprout 
numerous hooks for customization when implemented in a 
web browser, without any effort on the application devel-
oper’s part. Displays are represented primarily by machine-
readable HTML or XML, navigation and commands are 
invoked by generic HTTP requests, and page designs can 
be tailored by stylesheets.  Here are some of the customiza-
tion possibilities that arise when an application is moved to 
the Web: 

Automating repetitive operations. Web automation may 
include navigating pages, filling in forms, and clicking on 
links. For example, many conferences now use a web site to 
receive papers, distribute them to reviewers, and collect the 
reviews. A reviewer assigned 10 papers to read and review 
repetitive web browsing to download each paper, print it, 
and (later) upload a review for it. Tedious repetition is a 
good argument for automation.  Other examples include 
submitting multiple queries and comparing the results, and 
collecting multiple pages of search results into a single page 
for easy printing or additional sorting and filtering.  

Integrating multiple web sites. The simplest kind of inte-
gration is just adding links from one site to another �[9], but 
much richer integration is possible. For example, many re-
tailers’ web sites incorporate maps and directions provided 
by a mapping service directly into their web pages, to dis-
play their store locations and provide driving directions. 
But end users have no control over this kind of integration. 
For example, before buying a book from an online book-
store, a user may want to know whether it is available in the 
local library, a question that can be answered by submitting 
a query to the library’s online catalog interface. Yet the 
online bookstore is unlikely to provide this kind of integra-
tion, not only because it may lose sales, but because the 
choice of library is inherently local and personalized to the 
user. 

Transforming a web site's appearance.  Examples of this 
kind of customization include changing defaults for form 
fields, filtering or rearranging web page content, and chang-
ing fonts, colors, or element sizes. Web sites that use Cas-
cading Style Sheets (CSS) have the potential to give the end 
user substantial control over how the site is displayed, since 
the user can override the presentation with personal 
stylesheet rules. With the exception of font preferences, 
however, current web browsers do not expose this capabil-
ity in any usable way. 
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These examples involve not only automating web user in-
terfaces (clicking links, filling in forms, and extracting data) 
but also customizing them (changing appearance, rearrang-
ing components, and inserting or removing user interface 
widgets or data).  The openness and flexibility of the web 
platform enables customizations that would not have been 
possible on the desktop. 

Existing approaches to web automation use a scripting lan-
guage that dwells outside the web browser, such as Perl, 
Python, or WebL �[1]. For an end user, the distinction is 
significant. Cookies, authentication, session identifiers, 
plugins, user agents, client-side scripting, and proxies can 
all conspire to make the Web look significantly different to 
an agent running outside the web browser.  Recent highly-
interactive web applications like Google Mail and Google 
Maps — sometimes called AJAX applications �[13] because 
they use asynchronous JavaScript and XML — have made 
this situation worse. 

But perhaps the most telling difference, and the most in-
timidating one to a user, is the simple fact that outside a 
web browser, a web page is just raw HTML. Even the most 
familiar web portal looks frighteningly complicated when 
viewed as HTML source. 

Chickenfoot is a new programming system we are develop-
ing that provides a platform for automating and customizing 
web applications through a familiar interface – as web 
pages rendered in a web browser. The challenge for Chick-
enfoot is simply stated: a user should never have to view the 
HTML source of a web page in order to customize or 
automate it. 

Chickenfoot addresses this challenge in three ways.  First, it 
runs inside the web browser, so that the rendered view of a 
web page is always visible alongside the Chickenfoot de-
velopment environment. Second, its language primitives are 
concerned with the web page's user interface, rather than its 
internal details. For example, Chickenfoot uses commands 
like click, enter, and pick to interact with forms.  
Third, it uses novel pattern-matching techniques to allow 
users to describe components of a web page (targets for 
interaction, extraction, insertion, or customization) in terms 
that make sense for the rendered view.  For example, 
click identifies the button to be clicked using keywords 
from its text label, rather than the name it was given by the 
web page designer. 

Chickenfoot is implemented as an extension for the Mozilla 
Firefox web browser, written in Java, JavaScript, and XUL.  
It consists of a development environment, which appears as 
a sidebar of Firefox, and a library built on top of JavaScript.  
Chickenfoot customizations are essentially JavaScript pro-
grams, so Chickenfoot currently does not support nonpro-
gramming users.  We assume that a Chickenfoot developer 
has some knowledge of JavaScript and HTML — not an 
unreasonable assumption, since many power users showed 
the ability and willingness to learn these during the explo-
sive growth of the Web.  The problem Chickenfoot is ad-
dressing is not learning JavaScript and HTML syntax, but 

rather reading and understanding the complex HTML used 
by today’s web applications. 

Naturally, many users would benefit from a web automation 
system that avoids the need to learn programming language 
syntax.  We regard Chickenfoot as a step towards this goal, 
but a crucial one, since it provides a level of expressiveness 
and completeness unavailable in special-purpose web 
automation systems. 

One system similar to Chickenfoot in implementation is 
Greasemonkey1, a Firefox extension that can run user-
written JavaScript on web pages just after they are loaded 
in the browser. Though Greasemonkey enables mutation 
and automation of web pages in the browser, it does not 
address the need to inspect the HTML of the page.  Platy-
pus2  is another Firefox extension, designed to work with 
Greasemonkey, that allows some customization of rendered 
web pages, but not automation or integration of multiple 
web sites. 

The rest of this paper is organized as follows.  First we give 
an overview of the Chickenfoot language and development 
environment, and describe a range of applications we have 
built using Chickenfoot.  Then we delve deeper into a novel 
aspect of Chickenfoot: the pattern matching used to identify 
web page elements for automation or customization.  We 
describe a survey of web users that motivated the design of 
the pattern matching, and present the algorithm we devel-
oped as a result.  Finally we review related work and make 
some conclusions. 

CHICKENFOOT 
Chickenfoot is an extension to the Mozilla Firefox web 
browser, consisting of a library that extends the browser's 
built-in JavaScript language with new commands for web 
automation, and a development environment that allows 
Chickenfoot programs to be entered and tested inside the 
web browser.  This section describes the essential Chicken-
foot commands, including pattern matching, form manipu-
lation, page navigation, and page modification.  The section 
concludes by describing the development environment 
(Figure 1). 

Language 
Chickenfoot programs are written in JavaScript, using the 
JavaScript 1.5 interpreter built into Mozilla Firefox.  As a 
result, Chickenfoot users have access to the full expressive-
ness of a high-level scripting language, with a prototype-
instance object system, lexically scoped procedures, dy-
namic typing, and a rich class library. 

Because Chickenfoot uses JavaScript, web developers can 
easily transfer their knowledge of JavaScript from web page 
development over to Chickenfoot.  Chickenfoot predefines 
the same variables available to JavaScript in web pages – 
e.g., window, document, location, frames, history – 
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so that JavaScript code written for inclusion inside a web 
page can also be used as a Chickenfoot script outside the 
web page.  JavaScript has its own ways of visiting new 
pages (location), manipulating form controls (docu-
ment.forms), and modifying page content (using the 
Document Object Model, or DOM �[12]).  These mecha-
nisms can be used by Chickenfoot scripts in addition to the 
Chickenfoot commands described in the next few sections.  
We have found that using the native JavaScript mechanisms 
generally require reading and understanding a web page’s 
HTML source.  But by providing access to them, Chicken-
foot provides a smooth escape mechanism for script devel-
opers that need to do something more low-level. 

All current web browsers, including Firefox, implement a 
security model for JavaScript to protect web users from 
malicious downloaded scripts.  A major part of this security 
model is the same-origin policy, which prevents JavaScript 
code downloaded from one web server from manipulating a 
web page downloaded from a different server.  This restric-
tion is clearly too severe for Chickenfoot, since its primary 
purpose is integrating and customizing multiple web sites. 
As a result, Chickenfoot scripts run at a privileged level, 
where they have access to the entire web browser, all pages 
it visits, and the user’s filesystem and network. Users must 
trust Chickenfoot code as much as they trust any other desk-
top application.  As a result, Chickenfoot scripts cannot be 
embedded in downloadable web pages like other 
JavaScript.  But Chickenfoot code can inject new behavior 

into downloaded pages, which is explained in more detail 
later. 

Pattern Matching 
Pattern matching is a fundamental operation in Chicken-
foot.  To operate on a web page component, most com-
mands take a pattern describing that page component. 

Chickenfoot supports two kinds of patterns: keyword pat-
terns and text constraint patterns.  A keyword pattern con-
sists of a string of keywords that are searched in the page to 
locate a page component, followed by the type of the com-
ponent to be found.  For example, “Search form” 
matches a form containing the keyword Search, and “Go 
button” matches a button with the word “Go” in its label.  
The component type is one of a small set of primitive 
names, including link, button, textbox, checkbox, 
radiobutton, and listbox.  When a keyword pattern is 
used by a form manipulation command, the type of page 
component is implicit and can be omitted. For example, 
click(“Go”) searches for a hyperlink or button with the 
keyword “Go” in its label.  Case is not significant, so 
click(“go”) has the same effect.  

A text constraint pattern combines a library of primitive 
patterns (such as link, textbox, or paragraph), literal 
strings (such as “Go”), and relational operators (e.g., in, 
contains, just before, just after, starts, ends).  
Text constraint patterns have been described in more detail 
previously �[10].  Text constraint patterns are generally used 

 
Figure 1. Chickenfoot development environment running inside the Firefox web browser. 
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to identify parts of a page for modification and extraction, 
although they can also be used for form manipulation. 

The find command takes a pattern of either kind and 
searches for it in the current page, e.g.: 

find(“Search form”) 
find(“link in bold”) 

Find returns a Match object which represents the first 
match to the pattern and provides access to the rest of the 
matches.  Here are some common idioms using find: 

// test whether a pattern matches 
if (find(pattern).hasMatch) { ... } 
 
// count number of matches 
find(pattern).count 
 
// iterate through all matches 
for (m=find(pattern);  
     m.hasMatch;  
     m = m.next) { ... } 

A Match object represents a contiguous region of a web 
page, so it also provides properties for extracting that re-
gion. If m is a Match object, then m.text returns the plain 
text it represents, i.e., the text that would be obtained by 
copying that region of the rendered web page and pasting it 
to a text editor that ignored formatting.  Similarly, m.html 
returns the source HTML of the region, which is useful for 
extracting the region with formatting intact.  Finally, 
m.element returns the DOM Element object represented 
by the region, if the region contains a single outermost ele-
ment.  This element can be used to get and set element 
attributes, e.g.: 

find(“link”).element.href 

The find command is not only a global procedure, but also 
a method of Match and Document. Invoking find on one 
of these objects constrains it to return only matches within 
the page or part of a page represented by the object. Here 
are some common idioms: 

// nested finds 
for (t=find(“table”);  
     t.hasMatch;  
     t = t.next) { 
  r = t.find(“row”); 
  ...  
} 
 
// find in a page not currently showing 
otherDocument.find(pattern) 

Clicking and Form Manipulation 
The next few commands allow Chickenfoot scripts to click 
on hyperlinks and fill in and submit forms.  

The click command takes a pattern describing a hyperlink 
or button on the current page and causes the same effect as 
if the user had clicked on it.  For example, these commands 
click on various parts of the Google home page: 

click(“Advanced Search”) // a hyperlink 
click(“I’m Feeling Lucky”) // a button 

Keyword patterns do not need to exactly match the label of 
the button or hyperlink, but they do need to be unambigu-

ous.  Thus, click(“Lucky”) would suffice to match the 
I’m Feeling Lucky button, but in this case, 
click(“Search”) would be ambiguous between the 
Google Search button and the Advanced Search link, and 
hence would throw an exception.  (Exact matches take 
precedence over partial matches, however, so if there were 
a single button labeled “Search”, then the click command 
would succeed.) Buttons and links labeled by an image can 
be matched by keywords mentioned in their ALT text, if 
any. The keyword matching algorithm is described in more 
detail later in this paper. 

The click command can take a Match object instead of a 
pattern, if the button or hyperlink to be clicked has already 
been found.  For example, to identify a button using a text 
constraint pattern, the user might write this: 

click(find(“button just after textbox”))  

The enter command enters a value into a textbox.  Like 
click, it takes a keyword pattern to identify the textbox, 
but in this case, the keywords are taken from the textbox’s 
caption or other visible labels near the textbox.  For exam-
ple, to interact with the Amazon login page, a script might 
say: 

enter(“e-mail address”, “rcm@mit.edu”) 
enter(“password”, password) 

When the page contains only one textbox, which is often 
true for search forms, the keyword pattern can be omitted. 
For example, this sequence does a search on Google: 

enter(“uist 2005”) 
click(“Google Search”) 

Checkboxes and radio buttons are controlled by the check 
and uncheck commands, which take a keyword pattern that 
describes the checkbox: 

check(“Yes, I have a password”) 
uncheck(“Remember Me”) 

Finally, the pick command makes a selection from a list-
box or drop-down box (which are both instantiations of the 
HTML <select> element).  The simplest form of pick 
merely identifies the choice by a keyword pattern: 

pick(“California”) 

If only one choice in any listbox or drop-down on the page 
matches the keywords (the common case), then that choice 
is made.  If the choice is not unique, pick can take two 
keyword patterns, the first identifying a listbox or drop-
down by keywords from its caption, and the second identi-
fying the choice within the listbox: 

pick(“State”, “California”) 

Like find, all the clicking and form manipulation com-
mands are also methods of Match and Document, so that 
the keyword search can be constrained to a particular part 
of a page: 

f = find(“Directions form”) 
f.enter(“address”, “32 Vassar St”) 
f.enter(“zip”, “02139”)  
f.click(“Get Directions”) 
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The form manipulation commands described so far permit 
setting the value of a form widget, which is the most com-
mon case for web automation.  To read the current value of 
a widget, a script can use find to locate it, and then access 
the value of its Element object in conventional JavaScript 
fashion, e.g.: 

find(“address textbox”).element.value 

Chickenfoot also provides a reset command which resets 
a form to its default values, though reset is rarely needed. 

Navigation and Page Loading 
In addition to loading pages by clicking on links and sub-
mitting forms, Chickenfoot scripts can jump directly to a 
URL using the go command: 

go(“http://www.google.com”) 

If the string is not a valid URL, go automatically prefixes it 
with “http://”. 

Conventional browser navigation operations are also avail-
able as Chickenfoot commands: back, forward, and re-
load. 

To retrieve a page without displaying it, the fetch com-
mand can be used.  It returns a Document object represent-
ing the invisible page: 

google = fetch(“www.google.com”) 

The JavaScript with statement is convenient for perform-
ing a sequence of operations on an invisible page, by im-
plicitly setting the context for Chickenfoot pattern matching 
and form manipulation: 

with (fetch(“www.google.com”)) { 
  enter(“syzygy”) 
  click(“Google Search”) 
  n = find(“number just after 
about“).text 
} 

Pages retrieved by fetch, go, or click are loaded asyn-
chronously by the browser, while the Chickenfoot script 
continues to run.  Thus, a script can fire off several fetch 
requests in parallel, without forcing each request to com-
plete before the next one starts. When a subsequent 
Chickenfoot command needs to access the content of a 
page, such as find, the command automatically blocks 
until the page is fully loaded.  The wait and ready 
commands make this blocking available to programmatic 
control.  Both commands take a Document object or an 
array of Documents as an argument.  With no arguments, 
the default is the current page. Wait blocks until at least 
one of the specified pages is fully loaded, and returns that 
page.  Ready returns a loaded page only if it has already 
completed, otherwise it immediately returns null. 

Page Modification 
Chickenfoot offers three primitive commands for changing 
the content of web pages: insert, remove, and replace.  

The insert command takes two arguments: a location on a 
page and a fragment of web page content that should be 
inserted at that location.  In its simplest form, the location is 

a text constraint pattern, and the web page content is simply 
a string of HTML: 

insert(“just before textbox”, 
       “<b>Search: </b>”) 

The location can also be derived from a Match object, but 
it must represent a single point in the page, not a range of 
content.  The before and after commands can be used to 
reduce one of these objects to a point: 

t = find(“textbox”) 
insert(after(t), “<b>Search: </b>”) 

The page content to be inserted can also be a Match object, 
allowing content to be extracted from another page and 
inserted in this one:  

map = mapquest.find(“image”) 
insert(“just after Directions”, map) 

The remove command removes page content identified by 
its argument, which can be a text constraint pattern or 
Match object.  For example: 

remove(“Sponsored Links cell”) 

The replace command replaces one chunk of page con-
tent with another.  It is often used to wrap page content 
around an existing element: 

keyword = find(“syzygy”) 
replace(keyword, “<b>”+keyword+“</b>”) 

Widgets 
When a Chickenfoot script needs to present a user interface, 
it can create links and buttons and insert them directly into 
a web page. Hyperlinks are created by the Link construc-
tor, which takes a chunk of HTML to display inside the 
hyperlink and an event handler to run when the link is 
clicked: 

new Link(“<b>Show All</b>”, showAll) 

The event handler can be either a string of Chickenfoot 
code (like the onclick attribute in HTML) or a JavaScript 
Function object. Buttons are created similarly by the But-
ton constructor. 

Other widgets can be created by inserting HTML, e.g.: 
insert(..., “<input type=checkbox>”) 

If an onclick attribute is included in this HTML element, 
however, the code it contains will execute like conven-
tional, untrusted JavaScript code downloaded with the page. 
Commands defined by Chickenfoot would be unavailable to 
it.   To add a Chickenfoot handler to a button created from 
HTML, one can use the onClick command: 

onClick(button, showAll) 

Development Environment 
Figure 1 shows a screenshot of the development environ-
ment presented by the current Chickenfoot prototype, which 
appears as a sidebar in Firefox.  At the top of the sidebar is 
a text editor used to compose Chickenfoot code, which may 
be merely a single expression or command to execute, or a 
larger program with function and class definitions.  This 
simple interface goes a long way toward making the 
JavaScript interpreter embedded in every web browser ac-
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cessible to the user. Previously, there were only two ways to 
run JavaScript in a web browser: by embedding it in a web 
page (generally impossible if the page is fetched from a 
remote web site, since the user can't edit it), or by using a 
javascript: URL, which requires the entire program to be 
written on a single line.  The Chickenfoot sidebar makes it 
much easier for an end-user to write and run scripts. 

The bottom of the sidebar has four tabbed panels.  First, the 
Output panel is an output window that displays error mes-
sages, output printed by the Chickenfoot output com-
mand, and the result of evaluating the Chickenfoot script 
(i.e., the value of the last expression). 

The Actions panel (not yet implemented) will display a 
history of browsing actions performed by the user, con-
stantly updated as the user browses the web.  This panel 
will enable self-disclosure �[3], displaying the Chickenfoot 
commands that would reproduce the user’s actions.  A 
manual browsing sequence can be used as the basis for a 
script by selecting it in the Actions pane and copying it into 
the script editor. 

The Patterns panel displays an interface for developing text 
constraint patterns, which allows the user to type in a pat-
tern and see what it matches in the current page.  This pane 
also displays the primitive patterns available in the text 
constraints pattern library. 

Finally, the Triggers panel allows a Chickenfoot script to be 
installed into the browser for regular use.  For manual invo-
cation, a script can be installed as a bookmark, which ap-
pears like any other bookmark in the Bookmarks menu and 
toolbar. For automatic invocation, a script can be associated 
with a trigger, which is a URL pattern such as 
http://www.amazon.com/*.  Whenever a page is 
loaded, if its URL matches a trigger, then the associated 
script executes automatically.  If a page matches multiple 
triggers, the associated scripts execute in the fixed order 
given by the Triggers pane.   The Triggers pane provides an 
interface for adding and removing triggered scripts, tempo-
rarily disabling triggers, and viewing errors in automatically 
triggered scripts. 

APPLICATIONS 
This section describes a few of the example scripts we have 
created using Chickenfoot. 

Adding File Type Icons to Links 
When a hyperlink points at a resource other than a web 
page (such as a PDF document, a ZIP archive, or a Word 
document), it is often helpful for the link to be visually dis-
tinguished – first, because the user may be actively scan-
ning the page for one of these resources, and second, be-
cause they may want to avoid them while casually surfing.  
Only a few web sites provide a visual cue to the file type of 
a hyperlink.  TargetAlert is a Firefox browser extension, 
developed by the first author, that adds file type icons to 
hyperlinks on any web site. 

TargetAlert was originally written in 217 lines of JavaScript 
and XUL.  We rewrote it in 29 lines of Chickenfoot.  The 
essence of the script is the following loop: 
for (l=find('link'); l.hasMatch; l=l.next) 
{ 
  href = l.element.getAttribute('href') 
  if (m = href.match(/\.(\w+)$/)) { 
    extension = m[1] 
    src = ‘moz-icon://.’ + extension  
          + ‘?size=16’; 
    insert(after(l), 
           ' <img src="’ + src + ‘”> ‘) 
  }  
} 

To simplify retrieving file type icons, the script exploits a 
feature of Firefox that works only on Windows: URLs of 
the form moz-icon://.ext?size=16 return the icon associated 
with file extension .ext in the Windows registry.  Firefox 
normally uses these URLs to display local directories in the 
browser.  The result of running this script on part of a web 
page is shown in Figure 2a. 

Sorting Tables 
Another feature that some web sites have, but many lack, is 
the ability to sort a table of data by clicking one of its col-
umn headers.  A Chickenfoot script can add this functional-
ity automatically to most tables, by replacing every table 
header cell it finds with a link that sorts the table. 

Most of the script is concerned with managing the sort, but 
here is the part that replaces headers with links: 

column=0 
for (h=table.find(‘text in cell in first 
row’); h.hasMatch; h=h.next) { 
  var f = makeRowSorter(table,column++) 
  replace(h, new Link(h, f)) 
} 

The makeRowSorter function returns a function that sorts 
the specified table by the specified column number. 

Concatenating a Sequence of Pages 
Search results and long articles are often split into multiple 
web pages, mainly for faster downloading.  This can inhibit 
fluid browsing, however, because the entire content isn’t 
accessible to scrolling or to the browser’s internal Find 
command.  Some articles offer a link to the complete con-
tent, intended for printing, but this page may lack other 
useful navigation. 

We have written a Chickenfoot script that detects a multi-
page sequence by searching for its table of contents (gener-
ally a set of numbered page links, with Next and Previous).  

    
          (a)                                       (b) 

Figure 2. Chickenfoot examples: (a) file type 
icons added to links, and (b) “Show All” link for 
page concatenation. 
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When a table of contents is found, the script automatically 
adds a “Show All” link to it (Figure 2b).  Clicking this link 
causes the script to start retrieving additional pages from 
the sequence, appending them to the current page.  In order 
to avoid repeating common elements from subsequent 
pages (such as banners, sidebars, and other decoration), the 
script uses a conservative heuristic to localize the content, 
by  searching for the smallest HTML element that contains 
the list of page links (since the content is nearly always ad-
jacent to this list) and spans at least half the height of the 
rendered page (since the content nearly always occupies the 
majority of the page).  The content element from each sub-
sequent page is inserted after the content element of the 
current page. 

Adjusting Contrast  
An unfortunate number of web pages make poor color 
choices, making the text hard to read even for users with 
good eyesight – and all but impossible for users with re-
duced vision. A simple Chickenfoot script can reset all the 
text colors to black and white for easier reading: 

for (e=find('element contains text'); 
     e.hasMatch; 
     e=e.next) { 
  e.element.style.color = 'black'; 
  e.element.style.background = 'white'; 
  e.element.style.backgroundImage=‘none’; 
} 

Coloring Java Syntax and Linking to Documentation 
The text constraint patterns used by Chickenfoot can draw 
on the rich library of patterns and parsers implemented in 
LAPIS �[10].  In the library is a Java parser, which is capa-
ble of finding and parsing Java syntax even if it is embed-
ded in a web page.  One of our Chickenfoot scripts uses this 
parser for coloring embedded Java syntax, e.g.:  

for (c = find('Java.Comment'); 
     c.hasMatch; 
     c = c.next) { 
  replace(c, “<span style=’color:green’>” 
             + c + “</span>”)  
} 

The script also links each occurrence of a class name to its 
Javadoc documentation: 

for (c = find('Java.Type'); 
     c.hasMatch; 
     c = c.next) { 
  if (c.text in classURL) { 
    replace(c, “<a href=’”  
             + classURL[c.text] + “’>” 
             + c.text + “</a>”) 
  } 
} 

The classURL array maps a class name (e.g. “String”) to 
the URL of its documentation, which another part of the 
script extracts from Sun's web site:  

go(“java.sun.com/j2se/1.5.0/docs/api”) 
click(“No Frames”)  
click(“All Classes”) 
for (l=find(‘link’);l.hasMatch;l=l.next){ 
  classURL[l.text] = l.element.href 
} 

This simple script ignores the problem of ambiguous class 
names (java.util.List and java.awt.List) and only uses the 
standard Java class library, but it would be straightforward 
to extend it to deal with these problems. 

Highlighting Vocabulary Words 
Students studying for college placement exams, such as the 
SAT, often work hard to expand their vocabulary.  One way 
to make this learning deeper is to highlight vocabulary 
words while the student is reading, so that the context of 
use reinforces the word’s meaning.  One of our Chickenfoot 
scripts takes a list of vocabulary words and definitions 
(posted on the web) and automatically highlights matching 
words in any page that the user browses.  The script uses a 
title attribute to pop up the word’s definition as a tooltip if 
the mouse hovers over it: 

for (w=find(‘word’);w.hasMatch;w=w.next){ 
  if (w.text in vocab) { 
    html = '<span style="background-
color: yellow” title="' 
              + vocab[w.text] + '">' 
         + w + '</span>' 
    replace(word, html) 
  }  
} 

Integrating a Bookstore and a Library  
The last example is a short script that augments book pages 
found in Amazon with a link that points to the book’s loca-
tion in the MIT library: 

isbn = find('number just after isbn') 
with (fetch('libraries.mit.edu')) { 
  pick('Keywords’); 
  enter(isbn) 
  click('Search') 
  link=find('link just after Location') 
} 
// back to Amazon 
if (link.hasMatch) { 
  insert(before('first rule after "Buying 
Choices"'), link.html) 
} 

USER STUDY OF KEYWORD MATCHING 
One of the novel aspects of Chickenfoot is the use of key-
word patterns to identify page elements, such as “Search 
button” and “address textbox”. To explore the us-
ability of this technique, we conducted a small study to 
learn what kinds of keyword patterns users would generate 
for one kind of page component (textboxes), and whether 

   
       (a)                                          (b) 

Figure 3. Chickenfoot examples: (a) highlight-
ing vocabulary words, and (b) integrating a link 
to a library into a bookstore page. 
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users could comprehend a keyword pattern by locating the 
textbox it was meant to identify. 

Method 
The study was administered over the Web.  It consisted of 
three parts, always in the same sequence. Part 1 explored 
freeform generation of names: given no constraints, what 
names would users generate? Each task in Part 1 showed a 
screenshot of a web page with one textbox highlighted in 
red, and asked the user to supply a name that "uniquely 
identified" the highlighted textbox. Users were explicitly 
told that spaces in names were acceptable. Part 2 tested 
comprehension of names that we generated from visible 
labels.  Each task in Part 2 presented a name and a screen-
shot of a web page, and asked the user to click on the text-
box identified by the given name.  Part 3 repeated Part 1 
(using fresh web pages), but also required the name to be 
composed only of "words you see in the picture" or "num-
bers" (so that ambiguous names could be made unique by 
counting, e.g. "2nd Month"). 

The whole study used 20 web pages: 6 pages in Part 1, 8 in 
Part 2, and 6 in Part 3.  The web pages were taken from 
popular sites, such as the Wall Street Journal, the Weather 
Channel, Google, AOL, MapQuest, and Amazon.  Pages 
were selected to reflect the diversity of textbox labeling 
seen across the Web, including simple captions (Figure 4a), 
wordy captions (b), captions displayed as default values for 
the textbox (c), and missing captions (d). Several of the 
pages also posed ambiguity problems, such as multiple 
textboxes with similar or identical captions. 

Subjects were unpaid volunteers recruited from the univer-
sity campus by mailing lists.  Forty subjects participated (20 
females, 20 males), including both programmers and non-
programmers (24 reported their programming experience as 
"some" or "lots", 15 as "little" or "none", meaning at most 
one programming class).  All but one subject were experi-
enced web users, reporting that they used the Web at least 
several times a week. 

Results 
We analyzed Part 1 by classifying each name generated by 
a user into one of four categories: (1) visible if the name 
used only words that were visible somewhere on the web 
page (e.g., "User name" for  Figure 4a); (2) semantic if at 

least one word in the name was not found on the page, but 
was semantically relevant to the domain (e.g., "login 
name");  (3) layout if the name referred to the textbox's 
position on the page rather than its semantics (e.g., "top box 
right hand side");  and (4) example if the user used an ex-
ample of a possible value for the textbox (e.g. 
"johnsmith056").  About a third of the names included 
words describing the type of the page object, such as 
"field", "box", "entry", and "selection"; we ignored these 
when classifying a name. 

Two users consistently used example names throughout 
Part 1; no other users did. (It is possible these users misun-
derstood the directions, but since the study was conducted 
anonymously over the Web, it was hard to ask them.)  Simi-
larly, one user used layout names consistently in Part 1, and 
no others did.  The remaining 37 users generated either 
visible or semantic names.  When the textbox had an ex-
plicit, concise caption, visible names dominated strongly 
(e.g., 31 out of 40 names for Figure 4a were visible).  When 
the textbox had a wordy caption, users tended to seek a 
more concise name (so only 6 out of 40 names for  Figure 
4b were visible).  Even when a caption was missing, how-
ever, the words on the page exerted some effect on users' 
naming (so 12 out of 40 names for  Figure 4d were visible). 

Part 2 found that users could flawlessly find the textbox 
associated with a visible name, as long as the name was 
unambiguous.  When a name was potentially ambiguous, 
users tended to resolve the ambiguity by choosing the first 
likely match found in a visual scan of the page.  When the 
ambiguity was caused by both visible matching and seman-
tic matching, however, users tended to prefer the visible 
match: given "City" as the target name for Go.com, 36 out 
of 40 users chose one of the two textboxes explicitly la-
beled "City"; the remaining 4 users chose the "Zip code" 
textbox, a semantic match that appears higher on the page.  
The user's visual scan also did not always proceed from top 
to bottom; given "First Search" as the target name for 
eBay.com, most users picked the search box in the middle 
of the page, rather than the search box tucked away in the 
upper right corner. 

Part 3's names were almost all visible (235 names out of 
240), since the directions requested only words from the 
page.  Even in visible naming, however, users rarely repro-
duced a caption exactly; they would change capitalization, 
transpose words (writing "web search" when the caption 
read "Search the Web"), and mistype words.  Some Part 3 
answers also included the type of the page object ("box", 
"entry", "field"). When asked to name a textbox which had 
an ambiguous caption (e.g. "Search" on a page with more 
than one search form), most users noticed the ambiguity 
and tried to resolve it with one of two approaches: either 
counting occurrences ("search 2") or referring to other 
nearby captions, such as section headings ("search prod-
ucts"). 

(a) (b) 

(c) (d) 

 Figure 4. Some of the textboxes 
used in the web survey. 
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KEYWORD PATTERN MATCHING ALGORITHM 
We now describe the heuristic algorithm that resolves a 
keyword pattern to a web page component, such as a text-
box. Given a name and a web page, the output of the algo-
rithm is one of the following: (1) a textbox on the page that 
best matches that name; (2) ambiguous match if two or 
more textboxes are considered equally good matches; or (3) 
no match if no suitable match can be found. 

The first step is to identify the text labels in the page that 
approximately match the provided name, where a label is a 
visible string of content delimited by block-level tags (e.g. 
<P>, <BR>, <TD>).  Button labels and ALT attributes on 
images are also treated as visible labels. Before compari-
son, both the name and the visible labels are normalized by 
eliminating capitalization, punctuation, and white space.  
Then each label is searched for an approximate occurrence 
of the name, using a conventional edit distance algorithm to 
tolerate typos and omitted words.  Matching labels are 
ranked by edit distance, so that closer matches are ranked 
higher. 

For each matching label, we search the web page for text-
boxes that it might identify.  Any textbox that is roughly 
aligned with the label (so that extending the textbox area 
horizontally or vertically would intersect the label's bound-
ing box) is paired with the label to produce a candidate 
(label,textbox) pair. 

These pairs are further scored by several heuristics that 
measure the degree of association between the label and the 
textbox.  The first heuristic is pixel distance: if the label is 
too far from the textbox, the pair is eliminated from consid-
eration.  Currently, we use a vertical threshold of 1.5 times 
the height of the textbox, but no horizontal threshold, since 
tabular form layouts often create large horizontal gaps be-
tween captions and their textboxes.  The second heuristic is 
relative position: if the label appears below or to the right 
of the textbox, the rank of the pair is decreased, since these 
are unusual places for a caption.  (We don't completely rule 
them out, however, because users sometimes use the label 
of a nearby button, such as "Search", to describe a textbox, 
and the button may be below or to the right of the textbox.) 
The final heuristic is distance in the document tree: each 
(label,textbox) pair is scored by the length of the shortest 
path through the DOM  tree from the label node to the text-
box node.  Thus labels and textboxes that are siblings in the 
tree have the highest degree of association. 

The result is a ranked list of (label, textbox) pairs.  The 
algorithm returns the textbox of the highest-ranked pair, 
unless the top two pairs have the same score, in which case 
it returns ambiguous match.  If the list of pairs is empty, it 
returns no match. 

We evaluated this algorithm on the 240 names (40 for each 
of 6 pages) generated by Part 3 of the study. Its perform-
ance is shown in Figure 5. For each name, Chickenfoot ei-
ther found the right textbox (Match), reported an ambigu-
ous match (Ambiguous), or returned the wrong textbox 
(Mismatch). Precision is high for 5 of the 6 pages.  Per-

formance is poor on the MIT page because it involved an 
ambiguous caption, and our heuristic algorithm does not yet 
recognize the disambiguation strategies used for this cap-
tion (counting and section headings). 

This evaluation is only preliminary; a proper evaluation 
should use a larger selection of web sites.  Nevertheless, it 
suggests that keyword patterns can be automatically re-
solved with high precision. 

RELATED WORK 
Several systems have addressed specific tasks in web auto-
mation and customization, including adding links �[9], build-
ing custom portals �[14], crawling web sites �[15], and mak-
ing multiple alternative queries �[2].  Chickenfoot is a more 
general toolkit for web automation and customization, 
which can address these tasks and others as well. 

One form of general web automation can be found in script-
ing language libraries such as Perl's WWW::Mechanize or 
Python's ClientForm. These kinds of scripts run outside the 
web browser, where they cannot easily access pages that 
require session identifiers, secure logins, cookie state, or 
client-side JavaScript to run. 

In an attempt to access these “hard-to-reach pages” �[4], 
some systems give the user the ability to record macros in 
the web browser, where the user records the actions taken 
to require access to a particular page, such as filling out 
forms and clicking on links. Later, the user can play the 
macro back to automate access to the same page. LiveAgent 
�[7] takes this approach, recording macros with a proxy that 
sits between the user’s browser and the Web. The proxy 
augments pages with hidden frames and event handlers to 
capture the user’s input, and uses this information to play 
back the recording later. Unfortunately, the proxy approach 
is also limited – for example, pages viewed over a secure 
connection cannot be seen, or automated, by the proxy. 
WebVCR �[4] is another macro recorder for web navigation, 
which skirts the proxy problem by using a signed Java app-
let to detect page loads and LiveConnect �[8] to instrument 
the page with event-capturing JavaScript after the page 
loads. Because part of WebVCR runs as an applet inside 
the browser, it can record all types of navigation. But nei-
ther LiveAgent nor WebVCR enable the user to modify the 
pages being viewed. 
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 Figure 5. Precision of keyword patterns. 
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Toolkits such as WBI �[5] and Greasemonkey focus on giv-
ing the user the ability to modify pages before, or just after, 
they are loaded in the user’s web browser. WBI uses a 
proxy to intercept page requests, letting user-authored Java 
code mutate either the request or the resulting page. Giving 
users the ability to automate pages with Java and all its li-
braries is a powerful tool; however, WBI is still hampered 
by the limitations of a proxy. 

Though both WBI and Greasemonkey enable the user to 
mutate pages, neither of them eliminates the need to inspect 
the HTML of the page to mutate it. For example, the sam-
ple scripts on the Greasemonkey site are full of XPath pat-
terns �[11] that identify locations in web pages. These scripts 
are difficult to create because they require the author to 
plumb through potentially messy HTML to find the XPath, 
and they are difficult to maintain because they are not resil-
ient to changes in the web site. Chickenfoot avoids this 
problem by giving users a high-level pattern language based 
on keyword matching that enables the user to identify pages 
without knowledge of the page’s HTML structure, facilitat-
ing development and increasing readability and robustness. 
In Chickenfoot, users can fall back on JavaScript to ma-
nipulate a page’s DOM or XPath expressions to select ele-
ments; however, they are not restricted to these tools. 

WebL �[1], a programming language for the Web, also fo-
cused on giving users a higher-level language to describe 
Web page elements. In WebL, the user provides names of 
HTML elements to create piece-sets, where a piece-set is a 
set of piece objects, and a piece is a contiguous text region 
in a document. WebL provides various methods to combine 
piece-sets called operators, including set operators such as 
union and intersection, positional operators such as 
before and after, and hierarchical operators such as in 
and contain. Although these operators help produce more 
readable scripts, the language does not eliminate the need to 
inspect a web page for the names of its HTML elements, as 
the user must provide those to construct the basic pieces on 
which the operators work. 

Another drawback of WebL, and of most of the aforemen-
tioned tools (with the exception of the macro recorders), is 
that they do not allow scripts to be developed inside the 
web browser. We consider the ability to experiment with a 
web site from the script development environment one of 
the greatest advantages of Chickenfoot – the user does not 
have to wait to see how it will affect the appearance of the 
web page, because Chickenfoot gives immediate feedback 
on the rendered page.  LAPIS �[10], a predecessor of Chick-
enfoot, took a similar approach, giving the user an interac-
tive environment in which to experiment with pattern 
matching and web automation. Unfortunately, the LAPIS 
web browser does not support web standards like 
JavaScript, cookies, and secure connections, so it fails to 
provide the user with a complete web experience. 

CONCLUSION, STATUS, AND FUTURE WORK 
Chickenfoot is a programming system for web automation, 
integrated into the Firefox web browser.  Chickenfoot en-

ables the user to customize and automate web pages without 
inspecting their source, using keyword pattern matching to 
name page components.  We showed that keyword patterns 
correspond closely to the names users actually generate for 
page components, and we presented a heuristic algorithm 
that implements keyword matching.  Future work includes 
more demonstrational programming (such as the Actions 
pane) and techniques for detecting changes to web applica-
tions that break Chickenfoot scripts and helping the user fix 
them.  We are also working to unify the two kinds of pat-
tern matching (keywords and text constraints), to make the 
language simpler and more uniform. 

Chickenfoot is under active development. The latest version 
is available at www.bolinfest.com/chickenfoot. 
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