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ABSTRACT 
 

On the desktop, an application can specify its user interface down to the last pixel, but on the 
World Wide Web, a content provider has little control over how the client will view the page 
once it has been delivered to the browser. This creates an opportunity for end-users who want to 
automate and customize their web experiences, but the growing complexity of web pages and 
standards prevents most users from realizing this opportunity. This thesis describes a 
programming system named Chickenfoot that enables end-users to automate, customize, and 
integrate web applications without examining their source code. It accomplishes this by 
embedding a programming environment directly into the Firefox web browser, where end-users 
can interactively develop programs that manipulate the interfaces of web pages. The design and 
implementation of the system's language are described, as well as the results of a user study that 
influenced the design. A range of applications built using Chickenfoot are also presented. 
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Chapter 1 Introduction 

 
End-user programmers are users who are not formally trained in programming, yet need to 
program in order to accomplish their daily tasks. Spreadsheets are often touted as the major 
success story in end-user programming [1] -- millions of users successfully write formulas in 
Microsoft Excel even though only a fraction of them consider themselves programmers, or even 
realize that they are programming at all. But when we look to the web browser, which is the most 
common tool for accessing information on the Web, we find that the existing tools for 
automating and customizing interactions with the Web are insufficient for developers and end-
user programmers alike. 
 
For example, consider a user who has compiled a list of homes that he is interested in through a 
realty web site, but now he wants to see how far each home is from his workplace. He could visit 
a site that provides driving directions, such as Google Maps, to plug in the addresses of each 
house and his workplace to find the distance between them, but this will be tedious if the list of 
houses is long. Ideally, this service would be provided by the realty web site -- it could provide 
its own web form for this task as many commercial sites have done by providing a "Store 
Locator" that finds the nearest Target or Wal-Mart to your home. However, as user queries get 
more intricate (now the user wants to find the home closest to his workplace that has a Dunkin' 
Donuts on the way there and a McDonald's on the way back), the likelihood that a web site can 
support such a query diminishes. Thus, the user needs the ability to write his own scripts that will 
automate his personal web tasks. To that end, the user needs a tool that simplifies the process of 
web scripting, so that the development and execution of the script take less time than it would to 
do the task manually. 
 
Most existing tools for scripting web pages [13, 15] require the user to work with the raw HTML 
of a page, as shown in Figure 1.1. In the string model, a web site is represented as a string of 
HTML, and users identify parts of the page by matching character patterns in the text. Because 
the HTML for most web sites is machine-generated rather than written by hand, it is often 
incomprehensible to an end-user programmer who is trying to script it, so writing scripts in this 
manner is time-consuming. Further, these scripts have a tenuous dependency on the current text 
of a web site, which may break if the site changes. 
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Other tools allow the user to work with the Document Object Model (DOM) of a web site, in 
which the page is represented as a tree of HTML elements, as shown in Figure 1.1. Although the 
DOM is the standard model for documents on the Web [2], it is not an appropriate model for 
end-user programmers because it still requires users to be familiar with the underlying HTML of 
the page. 
 
To address these shortcomings, my thesis presents Chickenfoot, an end-user programming 
system for automating and customizing web applications through a familiar interface – as web 
pages rendered in a web browser. Chickenfoot enables users to work with the rendered model of 
a web page, as shown in Figure 1.1. The rendered model represents a page as a two-dimensional, 
typeset document, which aims to be consistent with the user's mental model of the page when 
viewing it through a web browser. 
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String model 
In the string model, a web page is 
represented as a string of HTML 
text. 

 
 

Document Object Model (DOM) 
In the Document Object Model, a 
web page is represented as a 
hierarchical tree of nodes. This tree 
is constructed from the string model 
using an HTML parser.  

 

Rendered model 
In the rendered model, a web page is 
represented a two-dimensional, 
typeset document. The browser 
creates this view by rendering the 
DOM. 

Figure 1.1 Three models of a web page (www.google.com). 
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Instead of using substrings of HTML or nodes in a tree to identify elements in a page, 
Chickenfoot identifies elements using keyword patterns. A keyword pattern is text that appears 
in the rendered view of a web page that can be heuristically evaluated to identify a component of 
the page. For example, in the rendered model of google.com shown in Figure 1.1, Google 
Search is a keyword pattern that identifies the left button below the textbox. In this case, the 
label of the button is the heuristic used to match the keyword pattern with the page component.  
 
Chickenfoot uses keyword patterns in its programming language, Chickenscratch. 
Chickenscratch is an extension of JavaScript [4] that includes commands that make sense for 
operating on the rendered model of a web page. For example, the Chickenscratch command for 
following a hyperlink or pressing a button is click(), so the code for submitting a search query 
to Google is click("Google Search"). 
 
Writing code that fills out web forms is a common goal for Chickenfoot users, so Chickenscratch 
has commands to automate form entry: enter, check, uncheck, pick, and click. These 
commands take keyword patterns to identify web form elements, such as textfields, checkboxes, 
dropdown boxes, and buttons. An example of using Chickenscratch to fill out a web form is 
shown in Figure 1.2. 
 

Web Form Chickenscratch Code 

 

 
 
 
 

enter("username", "Michael") 
 

enter("password", "mypasswd") 
 

check("remember") 
 

click("sign in") 
 
 
 
 

Figure 1.2 Filling out a form using Chickenscratch (www.gmail.com) 

 
Chickenscratch also has commands named insert and remove that allow users to add and delete 
content from a page, respectively. This is especially important for users who wish to amend 
pages with their own content, or to integrate content from multiple web sites. 
 
Users can access other sites by using Chickenscratch commands: go(url) will create a rendered 
model of the url by loading it in the browser, and fetch(url) will create the model without 
displaying the page. Once the model has been created, Chickenscratch has a find command that 
takes a pattern and returns any matches that it finds. The pattern may be a keyword pattern or a 
text constraint, which is a pattern that can refer to the implicit structure of a page. An example of 
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a text constraint is image in first row in second table. Like keyword patterns, text 
constraints can be created from the rendered model of a page alone. 
 
To ensure that the rendered model will be available when developing Chickenscratch code, 
Chickenfoot is implemented as a sidebar inside the popular Firefox web browser, as shown in 
Error! Reference source not found.. From here, users can experiment with a web site by 
writing and running Chickenscratch code. 
 

 
Figure 1.3 Chickenfoot as a sidebar in the Firefox web browser 

 
Returning to the prospective homeowner mentioned earlier, he could solve his problem by using 
Chickenfoot to create a script that would get the driving distance from Google Maps and 
automatically insert it after the address on the realty site: 
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First, he would use the 
find command to 
extract a house's address 
from a web site. 
 

  

 
 
location = find('text just before "google map"') 
 

 
Then, he would use go 
to navigate to Google 
Maps. There he would 
use enter to fill in the 
address data, and click 
to submit the query to 
Google Maps. 
 

  

 
 
go('http://maps.google.com/') 
click('Directions') 
enter('start address', '77 mass ave 02139') 
enter('end address', location + ' boston') 
click('search') 

 
Next, he would use the 
find command to 
extract the driving 
distance from the 
directions page returned 
by Google Maps. 
 

  

 
 
distance = find('text just after distance') 
 

 
Finally, he would use 
insert to amend the 
realty site with the new 
information. 
 

  

 
 
insert('point just after "yahoo map"', distance) 
 

Figure 1.4 Integrating Google Maps with a realty site. 

Once the user has written this script, he will want to run it automatically whenever he checks a 
listing on the realty web site. Chickenfoot provides a trigger system that lets a user define a 
collection of URLs that will trigger a user's script automatically when a URL in the collection is 
loaded, causing the user's script to be run. 
 
Note that the user is able to create this script without looking at any HTML; all the interactions 
that he needed to do with the above web pages could be done through the rendered model. 
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My thesis statement is: Chickenfoot allows users to customize and automate web pages 
without viewing their HTML source. In defending this claim, my thesis makes the following 
contributions: 
 

• Chickenfoot, an end-user programming system for web automation that provides users 
with access to the rendered model of a web page, which abstracts the underlying HTML 
from the user. 

• Chickenscratch, a language for operating on the rendered model. 
• The concept of keyword patterns, including a web survey justifying their usability as 

well as an algorithm for matching them with web page components. 
• A development environment for developing JavaScript code as well as extensions to 

the Firefox web browser. 
• A trigger system that can execute Chickenscratch code whenever a user visits a web site 

so that the user's customizations automatically become part of the page. 
• Improvements to the W3C DOM specification for updating Ranges in the DOM after 

mutation. 
 
The rest of this dissertation explains the details of the Chickenfoot system. A survey of related 
work in other Web automation systems is presented in Chapter 2. The design of Chickenscratch 
is explained in Chapter 3. Examples of applications that have been built using Chickenfoot are 
provided in Chapter 4. The design of the development environment, including the trigger system, 
is explained in Chapter 5. A web survey that motivated the design of keyword patterns is 
discussed in Chapter 6, and the algorithm used to identify keyword patterns is presented in 
Chapter 7. The implementation of the Chickenfoot system is covered in Chapter 8. Finally, 
future extensions to Chickenfoot as well as its contributions are discussed in Chapter 9. 
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Chapter 2 Related Work 

 
Several systems have addressed specific tasks in web automation and customization, including 
adding links [4], building custom portals [5], crawling web sites [6], and making multiple 
alternative queries [7].  Chickenfoot is a more general toolkit for web automation and 
customization that can address these tasks and others as well. Here I survey some of the major 
features of existing toolkits and compare how they are supported in Chickenfoot. The survey 
includes: 
 

• programming languages, WebL [8] and Perl [9] (with Mech [10]), 
• macro recorders, WebVCR [11] and LiveAgent [12], 
• proxy-based tools, WBI [13] and Screen-Scraper [14],  
• browser extensions, Greasemonkey [15] and Chickenfoot [16], 
• and an experimental web browser, LAPIS [17]. 

 
A summary of the results of this survey is presented in a table at the end of this section. 

2.1 Access Points to the Web 
When doing a task on the Web, the first step is to access a web page. Though web pages are 
always accessed by sending a request to a server, the point of access can be significant in 
determining the page that is returned. The three types of access points that are seen in web 
automation toolkits are: outside the browser (usually from the command-line), within a proxy, 
and inside the browser. 

2.1.1 Outside the Browser 
Most modern scripting languages, Perl, Python, Ruby, etc., have a method for taking a URL, 
connecting to it, and downloading its content. In these languages, every connection to the Web is 
an independent request with no sense of state. The main benefit of this method is that programs 
can be run from the command-line, which is helpful in automating access to the Web.  
 
Unfortunately, a URL accessed in this way often returns different content than it does when 
accessed through a browser. Web browsers support cookies, session variables, and client-side 
scripting, all of which affect the way web pages are displayed. Because these scripting languages 
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do not support these advanced features, the content that they download may not be consistent 
with the content that the user is accustomed to viewing in his web browser. For example, 
accessing the home page for an e-commerce site that uses cookies to display personalized 
information will have different content when accessed through a web browser than it does when 
downloaded by a Perl script run on the command-line. 
 
Also, although most pages can be accessed directly by their URL, some pages are dynamically 
generated only after a series of navigations, and other pages require a secure connection to be 
established before the URL can be accessed. These "hard-to-reach" pages [11] cannot be 
accessed by the independent requests made by scripting languages because they lack the sense of 
state required to reach them. Because not every URL can be accessed from outside the browser, 
and even the pages that can be accessed outside the browser may not be consistent with what 
users expect, accessing pages in this way is insufficient for a web automation system. In addition 
to the scripting languages listed above, even WebL [8], a programming language designed for 
the Web, suffers from this problem. 

2.1.2 Within a Proxy 
The next-best solution is to use a proxy that sits between the user's web browser and the Internet. 
When a user requests a page from his browser, the proxy may intercept the request, or the 
server's response, and modify it before it returns to the browser. This is a good approach, in that 
the activity of the proxy is hidden from the end-user and is therefore seamlessly integrated into 
the user's web experience. Another benefit is that the effects of a proxy can be seen through any 
browser on the user's desktop, so toolkits that use proxies do not force the user to use a particular 
browser. 
 
However, there are two major limitations of using a proxy in a web automation toolkit. The first 
is that a proxy cannot read pages that have been encrypted by the browser, and the second is that 
the proxy cannot have any effect on a page after it returns it to the browser. 
 
When a client accesses a site over a secure connection, every transaction with the site is 
encrypted. Because the proxy will only see the page after it has been encrypted by the browser, 
any toolkit that accesses pages through a proxy will not be able to manipulate such a page. 
Because security is becoming a greater concern on the Web, the number of sites that use 
encryption is likely to increase, so this limitation of proxy-based toolkits is significant. 
 
Another growing trend is the heavy use of client-side JavaScript in web pages. Because there is 
in an inherent latency in accessing information over the Web, some sites embed complex 
JavaScript in their pages that can run in the client's web browser, after the page has been loaded.  
Responding to user input with this client-side JavaScript is much faster than responding with a 
subsequent request to the server, so this technique yields web applications whose performance 
rivals that of desktop applications. Because this activity happens in the web browser after the 
page has been loaded, a proxy has no knowledge of these events, so proxy-based toolkits cannot 
respond to this activity. 
 
All proxy-based toolkits are affected by these proxy problems, including WBI [13], LiveAgent 
[12], and Screen-Scraper [14]. 
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2.1.3 Inside the Browser 
The third point of access, which is the one that Chickenfoot uses, is from inside the browser 
itself. By embedding a web automation tool inside the browser, the tool is guaranteed to be able 
to access the page as the user sees it, incorporating the effects of stylesheets, session identifiers, 
etc. Unlike a proxy-based toolkit, it can react to changes in the page that are caused by client-
side scripting. It also overcomes the proxy's restriction to insecure pages by letting the browser 
decrypt encrypted pages before acting upon them. Both Chickenfoot and Greasemonkey [15] are 
extensions to the Firefox web browser that take this approach. 

2.2 Automated Navigation 
To access pages that are generated dynamically or that require a login, the user must fill out and 
submit Web forms, so to provide programmatic access to any page on the Web, it is necessary to 
automate entering form data on the Web as well. 
 
Perl provides support for automating form interaction through its WWW::Mechanize module, 
often referred to as Mech [10]. Mech allows the user to write Perl code to automate a form in a 
web page by supplying the names and values of the inputs the user wants to enter. From there, 
Mech can submit the form data and return the result to the user. The user is restricted to using the 
same names for input elements as the web site does. This is often undesirable for end-user 
programmers because such names are often unintuitive to end users; for example, the name of 
the search box on Google is q. 
 
Some toolkits give the user the ability to record macros where the user records the actions taken 
to require access to a particular page, such as filling out forms and clicking on links. Later, the 
user can play the macro back to automate access to the same page. LiveAgent [12] takes this 
approach, recording macros with a proxy that sits between the user’s browser and the Web. The 
proxy augments pages with hidden frames and event handlers to capture the user’s input, and 
uses this information to play back the recording later. Unfortunately, because LiveAgent uses a 
proxy, it suffers from proxy problems and therefore cannot automate pages that are accessed 
over a secure connection. 
 
WebVCR [11] is another macro recorder for web navigation that skirts the proxy problems by 
using a signed Java applet to detect page loads and LiveConnect [18] to instrument the page with 
event-capturing JavaScript after the page loads. Because WebVCR runs as an applet inside the 
browser instead of sitting behind a proxy, it can record all types of navigation. 

2.3 Pattern Language 
Once a web automation toolkit has acquired input, its next step is usually to extract content from 
the page, often referred to as screen-scraping. To do this, the toolkit needs to have a rich pattern 
language to describe the content to extract. 
 
Probably the most primitive tool for extracting material from an HTML document is regular 
expressions [20]. Though regular expressions (regexps) are a powerful technique for matching 
patterns in ordinary text documents, using them for processing HTML is often undesirable 
because by default regexps have a greedy “leftmost longest match” rule that consumes nested 
HTML elements, returning one large match instead of the individual matches contained within it 
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[8]. Further, though precise, regular expressions are often cryptic. For example, suppose a 
programmer comes across the following regular expression in a script: 
 
^(([A-Za-z0-9]+_+)|([A-Za-z0-9]+\-+)|([A-Za-z0-9]+\.+)|([A-Za-z0-9]+\++))*[A-
Za-z0-9]+@((\w+\-+)|(\w+\.))*\w{1,63}\.[a-zA-Z]{2,6}$ 

 
What is this regex supposed to match? Is the regex correct? It is hard to answer these questions 
without studying it in detail. This regex is intended to match an email address; however, its 
author admits that it fails to match email addresses that use IP numbers in the host portion [20]. 
Thus, despite the power and precision of regular expressions, it is still difficult to get them right. 
If this is the case for mature software developers, then what hope do end-user programmers 
have? 
 
More importantly, regexps require the user to become intimately familiar with the HTML of the 
page from which they wish to abstract information. This forces the client to use the string model 
of an HTML document rather than the more expressive DOM that is inherent within it. 
 
The commercial Screen-Scraper tool [14] builds on regular expressions by providing a pattern 
type called an extractor pattern. An extractor pattern is "a block of text (usually HTML) with 
special tokens inserted where data is to be pulled." [21] In Screen-Scraper, an extractor pattern 
may look like this: 
 
<p>This is the <b>~@EXTRACTED_TEXT@~</b> I'm interested in.</p> 

 
where EXTRACTED_TEXT is a variable that can be used later in the program. In practice, this is no 
more powerful than using capturing parentheses in regular expressions; however, this may be 
more readable for a novice programmer. 
 
A popular, more powerful pattern language for HTML and XML documents is XPath [22]. 
Unlike pure regular expressions, XPath allows users to match nested nodes within a parent node. 
Also, the syntax of an XPath expression closely resembles the form of the matches to the 
expression, making it easier for other programmers to understand what the expression is trying to 
match. For example, /doc/chapter[5]/section[2] selects the second section of the fifth 
chapter of the doc.However, this syntax has the same drawback that regular expression syntax 
does, in that writing an XPath expression requires the user to become intimately familiar with the 
HTML of the page. Even so, the fact that the majority of the sample scripts on the 
Greasemonkey site use XPath expressions [23] is a testament that many script authors are willing 
to plumb through a site's HTML in order to automate it. Also, as XPath is a W3C standard, Perl, 
Java, and JavaScript all have libraries that support XPath queries, so XPath expressions may be 
reused in other programming languages. 
 
WebL [8] is a programming language for the Web that focuses on giving users a higher-level 
language to describe web page elements. In WebL, the user provides names of HTML elements 
to create piece-sets, where a piece-set is a set of piece objects, and a piece is a contiguous text 
region in a document. WebL provides various methods to combine piece-sets called operators, 
including set operators such as union and intersection, positional operators such as before and 
after, and hierarchical operators such as in and contain. Although these operators help produce 
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more readable scripts, the language does not eliminate the need to inspect a web page for the 
names of its HTML elements, as the user must provide those to construct the basic pieces on 
which the operators work. In this way, WebL provides a pattern language that is similar to 
XPath, but is more expressive because of the hierarchical operators that it provides. 
 
LAPIS [17] has a pattern language that is a cut above that of the previous toolkits called text 
constraints. As mentioned in Chapter 1, text constraints is a pattern language that can refer to the 
implicit structure of page. The text constraint image in first row in second table is 
devoid of HTML and regexp syntax, so it is much more appropriate for an end-user programmer. 
It is also possible for an end-user programmer to create this pattern from the rendered model of a 
web page, rather than the string model. Finally, this pattern is more likely to succeed even if the 
web site's HTML changes because it is based on lightweight structure rather than an overfitting 
regexp pattern. 
 
Unlike any of the previous toolkits, LAPIS also makes it possible to create new patterns by 
demonstration. To create a pattern by demonstration in LAPIS, a user can highlight a portion of a 
document using the mouse, and LAPIS will offer various text constraints that match the pattern. 
This is especially helpful to users who have trouble formulating text constraints. 
 
Indeed, LAPIS text constraint patterns are more accessible to end-user programmers than other 
pattern libraries are, so Chickenfoot includes the LAPIS pattern library as part of its 
implementation. However, Chickenfoot also builds upon this library by supporting keyword 
patterns, which are patterns that use the spatial location of text in the rendered web page to find 
matches. Keyword patterns are discussed in more detail in section 3.1. Though Chickenfoot 
provides high-level patterns such as keywords and text constraints, it also supports XPath and 
regular expressions, which users may already be familiar with. 

2.4 Modifying Page Content 
Of the toolkits described thus far, only WBI, Greasemonkey, and Chickenfoot empower the user 
to write scripts that change the appearance of a web page in the user's browser. WBI uses a proxy 
to intercept page requests, letting user-authored Java code mutate either the request or the 
resulting page before it appears in the user's browser, and Greasemonkey and Chickenfoot can 
run JavaScript code on a page just after it is loaded in Firefox. Each toolkit lets users manipulate 
pages with a high-level programming language that ultimately enables the user to seamlessly 
alter his web browsing experience (though WBI cannot mutate encrypted pages because of its 
proxy problems). 
 
In addition to manually running scripts, users of all three of these toolkits can write code that will 
allow their scripts to be triggered automatically upon loading particular web pages. Users can 
specify whether their script should run on all pages that are loaded in the browser, or only on 
pages whose URL matches a special pattern. Additionally, both WBI and LiveAgent allow users 
to schedule scripts or agents to be triggered by time of day rather than by URL. 

2.5 Development Environment 
One major drawback of most of the aforementioned tools (with the exception of the macro 
recorders), is that they do not allow scripts to be developed inside the web browser. We consider 
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the ability to experiment with a web site from the script development environment one of the 
greatest advantages of Chickenfoot – the user does not have to wait to see how it will affect the 
appearance of the web page because Chickenfoot gives immediate feedback on the rendered 
page. LAPIS, a predecessor of Chickenfoot, took a similar approach, giving the user an 
interactive environment in which to experiment with pattern matching and web automation. 
Unfortunately, the LAPIS web browser does not support web standards like JavaScript, cookies, 
and secure connections, so it fails to provide the user with a complete web experience. 

2.6 Summary 
Table 2-1 is a summary of the various web automation toolkits discussed in this section. 
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Table 2-1 Comparison of features of existing web automation tools. 
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Chapter 3 Language Design 

 
Rather than creating an entire language from scratch, I designed Chickenscratch as an extension 
of the JavaScript programming language [3]. In addition to the technical benefit of being able to 
take advantage of the existing JavaScript interpreter built into a web browser, this design 
decision also facilitates the adoption of Chickenscratch by those with web design experience. To 
that end, Chickenscratch provides a number of JavaScript objects and functions that are familiar 
to JavaScript web programmers. These are listed in Appendix A. 
 
However, most Chickenfoot users are focused on facilitating the manipulation of web content, 
which means that users need to be able to programmatically describe elements in the page on a 
high level. Pure JavaScript provides an interface to a page's DOM, but this is too low-level for 
end-user programmers. To bridge this gap, Chickenscratch extends JavaScript by adding a 
pattern matching system for identifying elements in the rendered model. It also provides 
commands to cut and paste these elements, as well as commands to automate user input to the 
browser. 

3.1 Pattern Matching 
Pattern matching is a fundamental operation in Chickenscratch.  To operate on a web page 
component, most commands take a pattern describing that page component. 
 
Chickenscratch supports two kinds of patterns: keyword patterns and text constraint patterns.  A 
keyword pattern consists of a string of keywords that are searched in the page to locate a page 
component, followed by the type of the component to be found.  For example, "Search form" 
matches a form containing the keyword Search, and "Go button" matches a button with the 
word Go in its label.  The component type is one of a small set of primitive names, including 
link, button, textbox, checkbox, radiobutton, listbox, and table.  When a keyword 
pattern is used by a form manipulation command, the type of page component is implicit and can 
be omitted. For example, click("Go") searches for a hyperlink or button with the keyword 
"Go" in its label.  Case is not significant, so click("go") has the same effect.  
 
A text constraint pattern combines a library of primitive patterns (such as link, textbox, or 
paragraph), literal strings (such as Go), and relational operators (e.g., in, contains, just 
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before, just after, starts, ends). Text constraint patterns are generally used to identify parts 
of a page for modification and extraction, although they can also be used for form manipulation. 
 
The find command takes a pattern of either kind and searches for it in the current page, e.g.: 
 
 find("Search form") 
 find("link in bold") 

 
find returns a Match object which represents the first match to the pattern and provides access to 
the rest of the matches. Here are some common idioms using find: 
 
 // test whether a pattern matches 
 if (find(pattern).hasMatch) { ... } 
 
 // count number of matches 
 find(pattern).count 
 
 // iterate through all matches 
 for (m = find(pattern); m.hasMatch; m = m.next) { 

    // use m 
    ... 
} 

 
A Match object represents a contiguous region of a web page, so it also provides properties for 
extracting that region. For example, if m is a Match object, then m.html returns the source HTML 
of the region and m.text returns the text of the region without the HTML tags. The complete list 
of properties for Match is listed in Table 3-1. 

3.1.1 Other Patterns 
find actually accepts a number of types, the union of which is called a Pattern in 
Chickenscratch. There are a number of other Chickenscratch commands, such as insert and 
click, that also accept a Pattern as an argument. Each of the following qualifies as a Pattern: 
 

• Text constraint (TC). A string whose content is a valid LAPIS pattern. Examples of TCs 
are second row in first table and 3rd Word in Sentence. See the LAPIS 
documentation [17] for a complete description of text constraints. 

• Keywords. A string of keywords that appear in the web page. If a string pattern parses 
successfully as a TC pattern, then it is interpreted as a TC pattern; otherwise, it is 
interpreted as a keyword pattern. 

• Match. Match object returned by an earlier call to find(). When supplied as an 
argument to find() it will simply return itself; however, it may be useful as an argument 
to other commands that accept a Pattern, such as replace(). 

• Node. A Node in the Document Object Model (DOM) representation of the web page. As 
Nodes are abstracted by Chickenfoot's rendered model of a page, they are not commonly 
used by Chickenscratch script authors to define a Pattern; however, using a Node as a 
Pattern is supported. 

• Range. A Range in the DOM. Like Node, it reflects the underlying structure of the page, 
so its use as a Pattern is not favored, but it is supported. 
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3.1.2 Match as a Search Context 
The find command is not only a global procedure, but also a method of Match. In this way, 
pattern matching in Chickenscratch can be constrained to a region of a document by finding a 
Match for the desired region and then using its find method to restrict the search to the part of 
the page delimited by the Match. This technique could be used to locate rows within a particular 
table: 
 
 table = find("third table after first heading") 

for (row = table.find("row"); row.hasMatch; row = row.next) {       
    ... // use row 

 } 
 
A Match can be used as a context for a variety of Chickenscratch commands that take patterns, 
including the web form commands seen in the examples in Chapter 1. For example, consider a 
page with multiple fields with the same label: 
 

 
Figure 3.1 Web form for requesting driving directions (www.mapquest.com) 

 
In this case, the command enter("state", "CA") would be ambiguous because there are two 
boxes labeled State. This problem can be solved by first matching the appropriate section of a 
page, and then using it as a context for for subsequent commands: 
 
 // starting address is context for enter 
 start = find("starting address table") 
 start.enter("address", "32 vassar st") 
 start.enter("zip", 02139") 
 
 // ending address is context for enter 
 end = find("ending address table") 
 end.enter("address", "1600 amphitheatre parkway") 
 end.enter("zip", "94043") 
 
 // no special context needed because label is unambiguous 
 click("get directions") 
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Contexts can help users focus on matching patterns in a particular part of a page. 
 
 
range the DOM Range whose content matched the Pattern used to create this 

object 
next (possibly null) reference to the next Match in the linked list of matches to the 

Pattern 
hasMatch boolean indicating whether this is the empty Match 
count number of remaining matches in this linked list of matches (including this 

Match) 
index 0-based index of Match within the linked list of matches (undefined for the 

empty Match) 
content a DocumentFragment cloned from range 
element if the content of the Match contains exactly a single Element node, then 

element is non-null reference to that Element 
document the document that was searched to create this Match 
html the HTML content of range 
text the text of html that is visible in the rendered web page 

Table 3-1 The complete list of properties of the Chickenfoot Match object 

3.2 Automation 
To be a total web automation system, the user must be able to programmatically fill out web 
forms and access web pages. This section describes how Chickenscratch is designed to support 
these operations. 

3.2.1 Web Forms 
Chickenscratch has a number of commands to automate interactions with a web site. Each 
command listed in this section can take a Pattern to identify the element to be automated. 
 
The click command takes a pattern describing a hyperlink or button on the current page and 
causes the same effect as if the user had clicked on it. For example, these commands click on 
various parts of the Google home page: 

 
click("Advanced Search") // a hyperlink 
click("I’m Feeling Lucky") // a button 

 

Keyword patterns do not need to match the label of the button or hyperlink exactly, but they do 
need to be unambiguous. Thus, click("Lucky") would suffice to match the I’m Feeling Lucky 
button, but in this case, click("Search") would be ambiguous between the Google Search 
button and the Advanced Search link, and hence would throw an exception.  (Exact matches take 
precedence over partial matches, however, so if there were a single button labeled “Search,” then 
the click command would succeed.) Buttons and links labeled by an image can be matched by 
keywords mentioned in their ALT text, if any. The keyword matching algorithm is described in 
more detail in Chapter 7. 
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The enter command enters a value into a textbox.  Like click, it takes a keyword pattern to 
identify the textbox, but in this case, the keywords are taken from the textbox’s caption or other 
visible labels near the textbox. Here is a script that logs into Gmail: 
 

enter("username", "Michael") 
enter("password", "mypasswd") 

 
because Username and Password were the visible labels to the left of the appropriate text boxes. 
 
When the page contains only one textbox in the page, which is often true for search forms, the 
keyword pattern can be omitted. For example, this sequence does a search on Google: 
 

enter("how many bathrooms are there in the white house") 
click("Google Search") 

 
Checkboxes and radio buttons are controlled by the check and uncheck commands, which take a 
keyword pattern that describes the checkbox: 
 

check(“Yes, I have a password”) 
uncheck(“Remember Me”) 

 
Finally, the pick command makes a selection from a listbox or drop-down box (which are both 
instantiations of the HTML <select> element). The simplest form of pick merely identifies the 
choice by a keyword pattern: 
 

pick(“California”) 

 
If only one choice in any listbox or drop-down on the page matches the keywords (the common 
case), then that choice is made.  If the choice is not unique, then pick can take two keyword 
patterns, the first identifying a listbox or dropdown by keywords from its caption, and the second 
identifying the choice within the listbox: 
 

pick(“State”, “California”) 

 
All of these commands can be used either as a global procedure or in a context, as they are all 
methods of Match. The following script is an example that exhibits all of the commands in this 
section to automate the Google preferences page shown in Figure 1.1: 
 

go('www.google.com') 
click('preferences') 
uncheck('search for pages in any language') 
check('english') 
pick('results per page', '20') 
click('save preferences') 
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Figure 3.2 Google Preferences Page (www.google.com/preferences) 

3.2.2 Navigation and Page Loading 
Chickenscratch provides a go command to navigate to a URL in the current window: 
 

go(String url [, Boolean force_reload]) 

 
The second argument to go is an optional reload flag; if true, it indicates that the browser should 
navigate to the URL even if it is already the current URL being displayed in the browser 
(effectively forcing a refresh). The reload flag is false by default. 
 
If the url input to go is not recognized as a well-formed URL, then http:// is prepended to the 
url before it attempts to navigate to the new page, so either of these commands can be used to 
load the Google home page in the browser: 
 
 go('http://www.google.com/') 
 go('www.google.com') 
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It is also possible to load a page without displaying it in the browser by using the fetch 
command: 
 

fetch(String url) // returns an object that delegates calls 
                  // to the page's DOM, once it has been loaded 

 
Pages accessed by go and fetch are loaded asynchronously, which means that calls to go and 
fetch will return right away; however, any methods invoked on a page before it finishes loading 
will cause Chickenfoot to hang until the page is loaded. 
 
To avoid locking up Chickenfoot, Chickenscratch has a ready command that can test if a page is 
loaded without invoking one of its methods. ready can take one page, or an array of pages, and it 
will return the first one that is finished loading, or null if all of the pages are still downloading: 
 

ivy = fetch('fas.harvard.edu') // load the a page in the background 
 sleep(10)                      // wait for 10 seconds 
 if (!(doc = ready(ivy)) { 
     alert('this site is too slow!')  // complain if it is slow to load 
 }  

 
Other times, the user will want to start downloading a number of pages and process them as they 
come in. In this case, the user will want to be notified whenever a page is finished downloading. 
For this, Chickenscratch has a wait command that takes a page, or an array of pages, and returns 
the first page that finishes loading, removing it from the array (if it exists): 
 

urls = [url1, url2, url3, ..., urlN] 
for (var i = 0; i < urls.length; i++) urls[i] = fetch(urls[i]) 
while (doc = wait(urls)) { 
    ... // process doc 
} 

 
Chickenscratch also supports the following commands that allow programmatic access to the 
browser buttons of same name: 
 
back() 
forward() 
reload() 

3.3 Page Modification 
End-users must to be able to insert and remove content in order to to customize a web site. This 
includes moving content within the page, taking content from other pages, or creating fresh 
content. Chickenscratch users can do all of this in the context of the rendered model. 

3.3.1 Insertions and Deletions 
Chickenfoot offers three primitive commands for changing the content of web pages: insert, 
remove, and replace.  
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The insert command takes two arguments: a location on a page and a fragment of web page 
content that should be inserted at that location.  In its simplest form, the location is a text 
constraint pattern, and the web page content is simply a string of HTML: 
 

insert("just before textbox", "<b>Search: </b>") 

 
The location can also be derived from a Match object, but it must represent a single point in the 
page, not a range of content. The before and after commands can be used to reduce one of 
these objects to a point: 
 
 t = find("textbox") 

insert(after(t), "<b>Search: </b>") 

 
The page content to be inserted can also be a Match object, allowing content to be extracted from 
another page and inserted in this one: 
 
 map = googlemaps.find("image") 
 insert("just after Directions", map) 

 
The remove command removes page content identified by its argument, which can be a text 
constraint pattern or Match object. For example: 
 
 remove("Sponsored Links cell") 

 
The replace command replaces one chunk of page content with another. It is often used to wrap 
page content around an existing element: 
 
 discount = find("10% off") 
 replace(discount, "<b>***" + discount + "***</b>") 

 
The exact definitions for these functions are as follows: 
 
insert(Position position, Chunk chunk) // returns a Match 
remove(Pattern pattern)                // returns a Position 
replace(Pattern, Chunk chunk)          // returns a Match 

 
Like Pattern, a Chunk is a union of types rather than its own type. Each of the following 
qualifies as a Chunk in Chickenfoot: 
 

• String. The text of the string will be interpreted as HTML if there is HTML markup 
present; otherwise, it will be interpreted as plaintext. 

• Match. Same as in section 3.1.1.  
• Node. Same as in section 3.1.1. 
• Range. Same as in section 3.1.1. 
• Link or Button. These are special Chunks that are defined in the next section. 

 
A Position is a Pattern that identifies a single point in the web page. Not every Pattern 
identifies a single point in a web page; on the contrary, a Pattern often refers to a nonempty 
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region of a web page rather than an individual point. However, before and after can always be 
used to produce a Position from a Pattern: 
 
before(Pattern pattern) // returns a Position at the start of the pattern 
after(Pattern pattern)  // returns a Position at the end of the pattern 

 
If the Pattern passed to insert is not a Position, then insert will throw an Error. 
 
The Match returned by insert is a reference to the content that was actually inserted into the 
page that the client can use it as a point of reference for future insertions or deletions. Similarly, 
remove returns a Position where the deletion took place so the user can have a reference to it if 
he did not have one already. 
 
The API for insert and remove make it trivial to implement replace: 
 
replace(pattern, chunk) ::= insert(remove(pattern), chunk) 
 
Nevertheless, replace is included as part of Chickenscratch to improve the readability of scripts. 
 
Finally, although delete would be a better name for the command that serves as the complement 
of insert, delete is a JavaScript keyword, so it would not be possible to define it as a function 
in Chickenscratch. 

3.3.2 Special Chunks: Link and Button 
When a Chickenscratch script needs to present a user interface, it can create links and buttons 
and insert them directly into a web page. Input buttons are created by the Button constructor, 
which takes a label for the button and an Action to execute when it is clicked: 
 
 showAll = function() { ... } 
 button = new Button ("Show All", showAll) 
 insert(position, button) 

 
An Action is either a JavaScript Function to be executed with no arguments, or a string whose 
content is a valid Chickenscratch script to be evaluated. It is important to realize that this is not 
the same as doing this: 
 
 insert(position, '<input onclick="showAll" value="Show All">') 

 
The difference is that the JavaScript code launched by the onclick attribute will be run in the 
browser's security model, which does not have full access to the browser, the user's filesystem, or 
the network. By contrast, an Action passed to the Button constructor will be run at a privileged 
level, giving the script a level of access comparable to that of any desktop application. 
 
There is a Link constructor that is analogous to Button that takes a chunk of HTML to display 
inside the hyperlink: 
 
 surprise = function() { ... } 
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 new Link("<b>What do I do?</b>", surprise) 
 insert(position, surprise) 

 
and there is also an onClick function to associate an Action with any Pattern on the page: 
 
 onClick("table", "alert('you clicked on the table!')") 
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Chapter 4 Applications 

 
This chapter describes a few of the applications that have been built using Chickenfoot. 

4.1 Adding File Type Icons to Links 
When a hyperlink points at a resource other than a web page (such as a PDF document, a ZIP 
archive, or a Word document), it is often helpful for the link to be visually distinguished – first, 
because the user may be actively scanning the page for one of these resources, and second, 
because they may want to avoid them while casually surfing. Only a few web sites provide a 
visual cue to the file type of a hyperlink. TargetAlert is a Firefox browser extension that I 
developed that adds file type icons to hyperlinks on any web site. 
 
TargetAlert was originally written in 217 lines of Javascript and XUL. I rewrote it in 29 lines of 
Chickenfoot. The essence of the script is the following loop: 
 
for (link = find('link'); link.hasMatch; link = link.next) { 
  href = link.element.getAttribute('href') 
  if (m = href.match(/\.(\w+)$/)) { 
    extension = m[1] 
    src = 'moz-icon://.' + extension + '?size=16'; 
    insert(after(link), ' <img src="' + src + '"> ') 
  }  
} 

 
The script works by finding every hyperlink in the page and inspecting the URL of its 
destination. It uses a simple regular expression to extract the file extension, indicating the type of 
file that the URL points to. In creating the file type icon, the script exploits a feature of Firefox 
that works only on Windows: URLs of the form moz-icon://.ext?size=16 return the icon 
associated with file extension .ext in the Windows registry. (Firefox normally uses these URLs 
to display local directories in the browser.) Using the moz-icon protocol, it is simple to get the 
icon for each file type, so the script uses this trick to insert an image that displays the appropriate 
icon after each link. The result of amending these links with images is shown in Figure 4.1. 
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Figure 4.1 TargetAlert 

4.2 Sorting Tables 
Another feature that some web sites have, but many lack, is the ability to sort a table of data by 
clicking one of its column headers.  A Chickenfoot script can add this functionality automatically 
to most tables by replacing every table header cell it finds with a link that sorts the table by that 
column. 
 
Most of the script is concerned with managing the sort, but here is the part that replaces headers 
with links: 
 
for (var table = find('table'); table.hasMatch; table = table.next) { 
  var heading = table.find('first row') 
  for (var h = heading.find('text in cell'); h.hasMatch; h = h.next) { 
    var sorter = makeRowSorter(table.index, h.index) 
    replace(h, new Link(h.text, sorter)) 
  } 
} 

 
The makeRowSorter function returns a function that sorts the specified table by the specified 
column number. It does this by copying every cell in the column to be sorted into a temporary 
array, and then uses JavaScript's built-in quicksort function to sort the array. Because the order of 
the cells in the temporary array reflects the order that the rows should have when sorted, it uses a 
map from the sorted cells to their rows to create a new array that contains the rows in sorted 
order. The last step is to iterate over this sorted array of rows and replace the ith row in the table 
with the ith element of the array. The results of this script can be seen in Figure 4.2. 
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Figure 4.2 Table sorting demo: First the script adds headers to the column and then the user can click on a 

header to sort the column. Here, the user clicked on the header of the first column. 

4.3 Concatenating a Sequence of Pages 
Search results and long articles are often split into multiple web pages, mainly for faster 
downloading. This can inhibit fluid browsing, however, because the entire content is not 
accessible to scrolling or to the browser’s internal Find command. Some articles offer a link to 
the complete content, intended for printing, but this page may lack other useful navigation. 
 
Matthew Webber [24] has written a Chickenfoot script that detects a multi-page sequence by 
searching for its table of contents (generally a set of numbered page links, with Next and 
Previous).  When a table of contents is found, the script automatically adds a Show All link to it 
(Figure 4.3).  Clicking this link causes the script to start retrieving additional pages from the 
sequence, appending them to the current page. In order to avoid repeating common elements 
from subsequent pages (such as banners, sidebars, and other decoration), the script uses a 
conservative heuristic to localize the content, based on searching for an HTML element that 
includes both the table of contents and the vertical midpoint of the page. The content element 
from each subsequent page is inserted after the content element of the current page. 
 
function showAll() { 
  var mostRecentNode = getPageContent() 
  insert(after(mostRecentNode), "NEXT INSERT") 
  for (var m1 = find("numberedlink in (first multipage in [body])");   
           m1.hasMatch; 
           m1 = m1.next) { 
      openTab() 
      go(m1.element.getAttribute("href")) 
      importNode = getPageContent().cloneNode(true) 
      closeTab() 
      insert(before("NEXT INSERT"), importNode) 
      mostRecentNode = importNode 
    } 
} 
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The showAll function gets executed when the user clicks on the Show All link. It locates the 
table of contents and the links within it using the LAPIS patterns NumberedLink and Multipage, 
respectively. These patterns were created by Webber. Once showAll has the table of contents, it 
iterates over each link in the table of contents, makes a connection to it in a new tab window in 
Firefox, gets its content, and inserts it to the original page. 
 
 

 
Figure 4.3 A "Show All" link embedded after a series of sequential links. Note that this link has the same style 
of the surrounding links, so it appears like a natural part of the page. Clicking this link will cause the browser 

to start downloading the other links shown here and concatenating their content to the current web page. 

4.4 Coloring Java Syntax and Linking to Documentation 
The text constraint patterns used by Chickenfoot can draw upon the rich library of patterns and 
parsers implemented in LAPIS. Philip Rha's recent work [25] in using LAPIS to detect snippets 
of other languages in documents with mixed syntax has made possible it to use LAPIS's Java 
parser to find and parse Java syntax even if it is embedded in a web page. This Chickenfoot 
script uses this parser for coloring embedded Java syntax: 
 
for (c = find('Java.Comment'); c.hasMatch; c = c.next) { 
  replace(c, '<span style="color:green">' + c + '</span>')  
} 

 
The script also links each occurrence of a class name to its Javadoc documentation: 
 
for (c = find('Java.Type'); c.hasMatch; c = c.next) { 
  if (c.text in classURL) { 
    replace(c, '<a href="' + classURL[c.text] + '">' + c.text + '</a>') 
  } 
} 

 
The effects of these scripts can be seen in Figure 4.4. Also, the classURL mapping in the script 
above maps a Java class name, such as String, to its Javadoc URL. This mapping is extracted 
from a Javadoc web site using Chickenfoot: 
 
go("java.sun.com/j2se/1.5.0/docs/api") 
click("No Frames") 
click("All Classes") 
for (link = find('link'); link.hasMatch; link = link.next) { 
  classURL[link.next] = link.element.href 
} 

 
These scripts mutate the page by simply wrapping each match to the Java parser with the 
appropriate style or hyperlink. 
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Figure 4.4 LAPIS Java-snippet parser used in Chickenfoot to hyperlink to Javadoc API and syntax-highlight 

Java comments 

4.5 Highlighting Vocabulary Words 
Students studying for college placement exams, such as the SAT, often work hard to expand 
their vocabulary. One way to make this learning deeper is to highlight vocabulary words while 
the student is reading, so that the context of use reinforces the word’s meaning. One of my 
Chickenfoot scripts takes a list of vocabulary words and definitions (posted on the web) and 
automatically highlights matching words in any page that the user browses. The script uses a title 
attribute to pop up the word’s definition as a tooltip if the mouse hovers over it as shown in 
Figure 4.5. 
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for (word = find('word'); word.hasMatch; word = word.next) { 
  if (word.text in vocab) { 
    html = '<span style="background-color: yellow" title="' 
          + vocab[word.text] + '">' 
          + word + '</span>' 
    replace(word, html) 
  }  
} 

 
Like the Java Syntax Coloring script, the Vocab Word script finds matches to a pattern in a web 
page and uses CSS styles to draw attention to the matches. 
 

 
Figure 4.5 User viewing definition of prodigious as a tooltip after running Vocabuarly script. 

4.6 Integrating a Bookstore and a Library  
The last example is a short script that augments book pages found in Amazon with a link that 
points to the book’s location in the MIT library: 
 
isbn = find('number just after isbn') 
with (fetch('libraries.mit.edu/')) { 
  pick('Keywords’); 
  enter(isbn) 
  click('Search') 
  link = find('link just after Location') 
} 
// back to Amazon 
if (link.hasMatch) { 
  insert(before('first rule after "Buying Choices"'), link.html) 
} 

 
The script extracts the ISBN number from the book's page on Amazon using find. Then it 
fetches the MIT library page and fills its search form using pick and enter. click is used to 
submit the search request, and when the search results page loads, the script uses find to extract 
a hyperlink to the book's availability and uses insert to slip the link into the Amazon page. The 
final product of this script is shown in Figure 4.6. 
 
 



 47 

 
Figure 4.6 Book availability in MIT Library inserted among Amazon purchasing options. 
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Chapter 5 User Interface Design 

 
Embedding the Chickenfoot development environment inside a popular, modern web browser is 
a key element of its design. If Chickenfoot were a standalone application, then it would be 
difficult for end-user programmers to write scripts because the site to be scripted may not be in 
view. Further, it would reduce the spontaneity of Web scripting because the user may be loath to 
start another application when he is in the middle of doing something in his browser – if the user 
encounters a problem from within the browser that could be solved by end-user scripting, then he 
should be able to solve the problem from the browser. Creating a special web browser to contain 
the development environment, as LAPIS and Haystack [26] do, also suffers from the "reduced 
spontaneity" problem. What's worse with these instrumented browsers is that users expect the 
same level of support for their bookmarks, plugins, etc., as they have in their preferred browser; 
however, such support is often deficient because it is not a priority for the developers. 

5.1 Layout Decisions 
Embedding a development environment into a web browser is a challenge because it needs to 
have enough screen real estate to be a useful tool without taking up so much space that it 
interferes with the user's browsing. Chickenfoot is implemented as a sidebar, just as History and 
Bookmarks are in most web browsers, so it takes up no more space than other common sidebars. 
This also means that the development environment can be hidden when it is not needed, but that 
it can be opened quickly, encouraging spontaneous scripting. 
 
As the user's main goal will be script development, the editor for writing the script is the top half 
of the sidebar. Tools to help with script development are in the bottom half of the sidebar. Each 
tool is used independently, so they are grouped together in a tabbed pane so that only one tool is 
visible at a time. This ensures that each tool has as much screen space as possible, and that the 
editor is always in view when a tool is being used. 
 
The interface is implemented in XUL [27], as that is the standard windowing toolkit for Firefox. 
Using XUL ensures internal consistency with the rest of the Firefox UI. 
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5.2 Panel Design 
The sidebar is divided into two panels. The Editor panel appears on top and contains a toolbar 
and the script editor. The Tools panel appears on bottom and contains four panes, each of which 
contains a tool for script development. This section describes each of these components, with the 
exception of the Triggers pane which is described in the next section. 

5.2.1 Editor Panel 
As shown in Figure 5.1, the top of the interface contains a toolbar with iconified buttons that run 
standard file input-output commands: Open, Save, and Save As. There is also a Run button that 
executes the current script and a Clear button to clear the editor. The Clear button is placed away 
from the other buttons to reduce the chance that it is clicked by accident. A toolbar was chosen 
instead of a menubar because it would be the second menubar in the interface, far from the top of 
the browser window with its own File menu, which would be inconsistent with the way 
menubars are used in other desktop applications. 
 
The script editor appears below the toolbar. Because there is no room for standard Edit menu 
commands in the toolbar, they are available in a context menu when the user right-clicks in the 
editor. The standard keyboard shortcuts for the Edit commands work in the editor as well, so 
these commands should be learnable even if they are not visible. The editor also supports syntax 
highlighting to help reduce syntax errors. 
 

 
Figure 5.1 Editor Panel 
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5.2.2 Tools Panel 
The first pane in the tools panel is the Output pane, which is analogous to standard out and 
standard error in other programming systems. The user can write to the Output pane using the 
Chickenscratch command output(), which takes a variable number of arguments and prints 
each argument to the Output pane, in order. If a Chickenfoot script throws an error, then the error 
will also be printed in the Output pane. Values written to Output during the current execution of 
the script appear in black whereas values from previous runs appear in gray. This makes it easier 
to distinguish new output from old output. 
 

 
Figure 5.2 Output Pane 

 
The next two panes, Patterns and Actions, are tools that aid in development, but also attempt to 
increase the learnability of the system. The Patterns pane presents the user with matches to a 
predefined list of LAPIS patterns that Chickenfoot has found in the page. This introduces the 
user to patterns that he may not have realized were supported in Chickenfoot, such as 
EmailAddress. The Patterns pane also lets the user type in a pattern and see if it matches 
anything in the page. 
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Figure 5.3 Patterns Pane 

 
The Actions pane keeps a log of the user's actions in the browser: clicking on links, checking 
radio buttons, etc. This log is formatted as a list of Chickenfoot commands. The goal is that a 
user can watch what appears in the Actions pane as he browses to learn what Chickenfoot code 
he should write to automate what he just did. In this way, Chickenfoot can act as a macro 
recorder, but unlike existing recorders, it indiscriminately records all actions instead of requiring 
the user to start and stop the recorder. This lets users can go back and retrieve a copy the 
transcript later, even though they may not have realized that such a log would be valuable at the 
time it was recorded. 
 

 
Figure 5.4 Actions Pane 

 



 53 

Although the current implementation of Chickenfoot is not as reliable as LiveAgent or WebVCR 
in recording every user action, the recorded transcript is more accessible in Chickenfoot than it is 
in these tools, making it easier for end-users to edit and understand. Improving Chickenfoot's 
recording capability is future work. 

5.3 Trigger Design 
For a user to seamlessly integrate Chickenfoot automations and customizations into his browser, 
he should be able to trigger Chickenfoot scripts by his ordinary browsing habits. Chickenfoot is 
designed so that it can run a script automatically when a user navigates to a URL, even if the 
Chickenfoot sidebar is not currently visible. 

5.3.1 Defining Triggers 
A user can define a collection of URLs that can trigger a script. Because a URL may trigger 
multiple scripts, the user must also impose a total order on the triggers so that Chickenfoot can 
run them sequentially. The alternative would be for Chickenfoot to try to run all scripts that 
matched a trigger in parallel; however, this would likely lead to concurrency issues. 
 
Because Chickenfoot is designed for end-user programmers, asking users to provide a regular 
expression to determine which URLs should trigger a script is too technical. Instead, 
Chickenfoot uses the simple pattern matching scheme for URLs used by the Adblock Firefox 
extension [28]. This scheme asks the user for a URL that may contain asterisks as wildcards, and 
uses it to produce a regular expression for matching URLs. To convert the URL to a regexp, it 
escapes all of the special regular expression characters with backslashes (such as periods and 
question marks) and replaces asterisks with the dot-star repeat operator. It also adds appropriate 
start and end anchors, and makes the regexp case-insensitive. For example, if the user provides: 
 
http://*.sun.com/* 

 
then the regular expression produced to match this pattern will be: 
 
/^http:\/\/.*\.sun\.com\/.*$/i 

 
This regexp will match these URLs: 
 
http://www.sun.com/ 
http://java.sun.com/ 
http://java.sun.com/tutorial/index.html 

 
But not these: 
 
http://www.sunsets.com/ 
http://java.sun.net/ 

 
This scheme aims to be simple and to meet user expectations. Greasemonkey also uses this 
scheme to define URL triggers. 
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5.3.2 Triggers Pane 
The Triggers pane is shown in Figure 5.5. It has a list of the triggers that the user has configured. 
Each item in the list shows the trigger's name, its URL pattern, and whether it is currently 
enabled. From this pane, the user can add or remove triggers, temporarily disable or enable 
triggers, or edit the name of a trigger. There is a separate checkbox for globally disabling all of 
the triggers if the user wants to disable Chickenfoot temporarily without losing his current 
settings in the Enabled? column. 
 

 
Figure 5.5 Trigger pane 
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Chapter 6 Keyword Pattern Survey 

 
One of the novel aspects of Chickenfoot is the use of keyword patterns to identify page elements, 
such as "Search button" and "address textbox." A similar technique is used by Google to 
associate search terms with pictures on the Web, and the success of Google Image Search is 
testament to the viability of this approach. However, image elements often have obvious labels, 
in the form of ALT or TITLE attributes, making it easier to deduce names for these images. 
 
I was interested in testing this approach for naming web froms because I wanted Chickenfoot 
users to be able to write scripts that could uniquely identify form elements without having to 
look up the web site's name for the element. Another possibility I considered was trying to 
automatically produce logical names for form elements and inserting them into the web page, 
near the element, providing users with names for elements that they could find in the rendered 
model. Unfortunately, this seemed even harder than resolving keyword patterns because the 
space of names to consider is so large. However, the converse is a more tractable problem 
because on any given web page, the number of input elements is relatively small, making the 
problem of resolving a user-provided name to a web form much more tractable. 
 
To explore the usability of this technique when applied to web forms, I conducted a small study 
to learn what kinds of keyword patterns users would generate for one kind of page component 
(textboxes), and whether users could comprehend a keyword pattern by locating the textbox it 
was meant to identify. The results collected in this survey were used as training data to motivate 
the algorithm used to resolve keyword patterns in Chickenfoot. The algorithm's procedure and its 
performance on the training data is explained in the next chapter. 

6.1 Method 
The study was administered anonymously over the Web. It consisted of three parts, always in the 
same sequence. Part 1 explored freeform generation of names: given no constraints, what names 
would users generate? Each task in Part 1 showed a screenshot of a web page with one textbox 
outlined in red, and asked the user to supply a name that "uniquely identified" the marked 
textbox. Users were explicitly told that spaces in names were acceptable. Part 2 tested 
comprehension of names that we generated from visible labels. Each task in Part 2 presented a 
name and a screenshot of a web page, and asked the user to click on the textbox identified by the 
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given name. Part 3 repeated Part 1 (using fresh web pages), but also required the name to be 
composed only of "words you see in the picture" or "numbers" (so that ambiguous names could 
be made unique by counting, e.g. "2nd Month"). 
 
The whole study used 20 web pages: 6 pages in Part 1, 8 in Part 2, and 6 in Part 3. The web 
pages were taken from popular sites, such as the Wall Street Journal, the Weather Channel, 
Google, AOL, MapQuest, and Amazon. Pages were selected to reflect the diversity of textbox 
labeling seen across the Web, including simple captions (Figure 6.1a), wordy captions (Figure 
6.1b), captions displayed as default values for the textbox (Figure 6.1c), and missing captions 
(Figure 6.1d). Several of the pages also posed ambiguity problems, such as multiple textboxes 
with similar or identical captions. 
 
Subjects were unpaid volunteers recruited from the university campus by mailing lists.  Forty 
subjects participated (20 females, 20 males), including both programmers and nonprogrammers 
(24 reported their programming experience as "some" or "lots," 15 as "little" or "none," meaning 
at most one programming class).  All but one subject were experienced web users, reporting that 
they used the Web at least several times a week. 
 

 
Figure 6.1 Examples of textboxes used in the web survey 

6.2 Results 
We analyzed Part 1 by classifying each name generated by a user into one of four categories: 
 

• Visible if the name used only words that were visible somewhere on the web page (e.g., 
"User name" for  Figure 6.1a) 

• Semantic if at least one word in the name was not found on the page, but was 
semantically relevant to the domain (e.g., "login name"); 

• Layout if the name referred to the textbox's position on the page rather than its semantics 
(e.g., "top box right hand side") 

• Example if the user used an example of a possible value for the textbox (e.g. 
"johnsmith056"). 

 
About a third of the names included words describing the type of the page object, such as "field," 
"box," "entry," and "selection;" we ignored these when classifying a name. The prevalence of 
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"field" and "box" was a significant result in motivating the design of keyword patterns because it 
suggested that these words should be ignored for a keyword pattern to enter() where the 
system already knows that it is looking for a textbox, but that these words should be treated as 
special identifiers for a keyword pattern to find() because it indicates the type of element that 
the user is trying to match rather than keywords to match in the page. Indeed, supporting 
keyword patterns that end with link, button, textbox, etc. was a direct result of this survey. 
 
Two users consistently used example names throughout Part 1; no other users did. (It is possible 
these users misunderstood the directions, but since the study was conducted anonymously over 
the Web, it was hard to ask them.) Similarly, one user used layout names consistently in Part 1, 
and no others did. 
 
The remaining 37 users generated either visible or semantic names. When the textbox had an 
explicit, concise caption, visible names dominated strongly (e.g., 31 out of 40 names for Figure 
6.1a were visible). When the textbox had a wordy caption, users tended to seek a more concise 
name (so only 6 out of 40 names for  Figure 6.1b were visible). Even when a caption was 
missing, however, the words on the page exerted some effect on users' naming (so 12 out of 40 
names for  Figure 6.1d were visible). This was a promising result in that when forced to name an 
unabeled element, one quarter of users still opted to use the page author's words to come up with 
a name rather than their own.  
 
Part 2 found that users could flawlessly find the textbox associated with a visible name when the 
name was unambiguous. When a name was potentially ambiguous, users tended to resolve the 
ambiguity by choosing the first likely match found in a visual scan of the page. When the 
ambiguity was caused by both visible matching and semantic matching, however, users tended to 
prefer the visible match: given "City" as the target name for go.com, 36 out of 40 users chose 
one of the two textboxes explicitly labeled "City;" the remaining 4 users chose the "Zip code" 
textbox, a semantic match that appears higher on the page. The user's visual scan also did not 
always proceed from top to bottom; given "First Search" as the target name for eBay.com 
(shown in Figure 6.2), most users picked the search box in the middle of the page, rather than the 
search box tucked away in the upper right corner. This suggested that supporting ordinals such as 
"first" and "second" to distinguish elements with similar labels would be difficult – other 
resolution techniques would need to be employed.  
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Figure 6.2 Most users selected the left box rather than the top one for  "First Search"  in Part 2 (ebay.com) 

 
Part 3's names were almost all visible (235 names out of 240), since the directions requested only 
words from the page. Even in visible naming, however, users rarely reproduced a caption 
exactly; they would change capitalization, transpose words (writing "web search" when the 
caption read "Search the Web"), and mistype words. Some Part 3 answers also included the type 
of the page object ("box", "entry", "field"). When asked to name a textbox which had an 
ambiguous caption (e.g. "Search" on a page with more than one search form), most users noticed 
the ambiguity and tried to resolve it with one of two approaches: either counting occurrences 
("search 2") or referring to other nearby captions, such as section headings ("search products").  
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Chapter 7 Keyword Pattern Algorithm 

We now describe the heuristic algorithm that resolves a keyword pattern to a web page 
component. This algorithm is used for identifying the following components: textfields, 
textareas, lists, drop-down boxes, push buttons, checkboxes, radio buttons, and hyperlinks. Given 
a keyword pattern and a web page, the output of the algorithm is one of the following: 
 

• the component on the page that best matches the pattern 
• ambiguous match if two or more components are considered equally good matches 
• no match if no suitable match can be found. 

 
The outline of the algorithm is as follows: first, the visible text in the page is carved up into 
groups called text blobs. Each blob is then compared to the keyword pattern, and blobs that 
include the pattern (within a tolerance) are kept in a list. Once this list has been created, the 
algorithm compares each blob with each component of interest in the page, e.g., if it is trying to 
match the keyword component with an element that lets users enter text, then textfields, 
password fields, and multiline textareas are the components of interest. In this comparison, each 
blob-component pair is given a score. If this set of pairs is nonempty, then the component of the 
pair with the highest score is returned by the algorithm. 

7.1 Finding Text Blobs 
The first step in resolving keyword patterns is to carve the visible text of an HTML document 
into text blobs that the keyword pattern will be matched against. A text blob is a visible string of 
content in the web page delimited by the opening and closing tags of a partitioning HTML 
element. A partitioning element is an ancestor of a group of text nodes that appear together in the 
rendered page. The heuristic used to decide whether an element is a partitioning element is its tag 
name. For example, a <p> tag blocks off a paragraph in HTML, so all of the text nodes under that 
node are likely to be part of the same blob. However, a <b> tag is generally used to add boldface 
for emphasis within a section of text, so it is not considered a partitioning element. The HTML 
tags that represent partitioning elements in this algorithm are listed in Appendix B. 
 
Consider the snippet of a web page shown in Figure 7.1 and its corresponding DOM in Figure 
7.2. Although the text "with all of the words" appears to be one unit in the rendered model, it is 
actually made up of three text nodes in the DOM. Because a user may use "with all words" as a 
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keyword pattern for the first textfield, it is important for the algorithm to compare the pattern to 
the concatenation of these three nodes rather than to each one individually. 
 

 
Figure 7.1 Rendered model of web page with multiple textfields (www.google.com/advanced _search) 

 
 

Figure 7.2 DOM of the web page shown in Figure 7.2 (www.google.com/advanced _search) 

To determine which text nodes constitute a blob, a preorder traversal is done over the DOM tree. 
Every time a partitioning element is reached, a new blob is created and every text node under 
that element is added to the blob. If the partitioning element has a partitioning element as a child, 
then text nodes that appear under its child belong to its child's text blob, not its own. 
 
Once all the blobs have been found, the text of the nodes within the blob is concatenated into a 
string (again, by a preorder traversal of the nodes in the blob) and an entry pairing the string with 
its partitioning element is added to a map. For the DOM in Figure 7.2, this map would contain 
the following four entries: 
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Blob content  Partitioning element 
"with all of the words" first TD under first TR 
"with the exact phrase" first TD under second TR 
"with at least one of the words" first TD under third TR 
"without the words" first TD under fourth TR 

Figure 7.3 Map of text blob content to the partitioning element that contains it 

Certain partitioning elements, such as SCRIPT and STYLE, must be treated as special cases 
because the text nodes that they contain are not visible in the web page, so those text nodes 
should not be considered when doing keyword matches, and therefore do not become part of a 
blob. 

7.2 Determining Candidate Text Blobs 
Once the mapping from blobs to partitioning elements has been built, an E-score is calculated for 
each blob. An E-score (for edit distance score) is a number from 0 to 1 that reflects how strongly 
the blob contains the keyword pattern. If the E-score exceeds a certain threshold, then the blob is 
added to a list of candidate blobs. 
 
When the pattern is a substring of the blob, then the minimum value of the E-score is 0.95. If the 
pattern and the blob must are the same string (when normalized), then the E-score is its 
maximum value, 1.0. This is because exact matches should be ranked higher than substring 
matches. For example, if a web page has one link labeled "MIT" and another labeled "MIT 
Libraries," then the keyword pattern should identify the first link instead of considering the two 
links equally. If it did not, and the algorithm returned ambiguous match, then this would 
inconsistent with user expectations because identifying an element by its exact name should be 
unambiguous. 
 
Keyword patterns that are not substring matches should not be disregarded altogether. Users may 
omit or transpose words in their keyword patterns, such as using "all words" as a keyword 
pattern to match the first blob in Figure 7.1. However, not all non-substring matches should be 
ranked equally: patterns that do a better job of matching a blob should have higher E-scores. 
 
To calculate an E-score for a blob B, I augment a conventional edit distance algorithm [29] as 
follows. First, both the blob and the pattern are normalized by eliminating capitalization and 
punctuation, and by replacing a sequence of whitespace characters with one space. Then the blob 
is searched for an approximate occurrence of the pattern P, using the edit distance algorithm to 
tolerate typos and omitted words. If the edit distance D is zero, that is, if the pattern is a substring 
of the blob, then the value of the E-score is: 
 

0.95 + 0.05 * (|P| / |B|), 
 

but if D is nonzero, then the value of the E-score is: 
 

0.95 – (D / |P|). 
 
When D is nonzero, that means that the pattern requires D insertions or deletions to be a 
substring of B. If the entire pattern would have to be edited to match B, then D is the length of 
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the pattern, in which case the E-score is 0, indicating that B does not match the pattern, as 
desired. But when D is less than the length of the pattern, then it is scaled so that blobs that 
require fewer edits have larger E-scores than those that require more edits. Note that an E-score 
for D equal to zero will always be higher than an E-score for a nonzero D. This scheme favors 
substring matches, as desired. 

7.3 Determining Candidate Matches 
Once the list of candidate blobs is constructed, the next step is to find components that are likely 
to be associated with the blob. This is done by taking the bounding box in the rendered web page 
(b-box) of the root node for each blob and comparing it to the b-box of each component of the 
type for which a match is sought. For example, when keyword pattern matching is used in the 
context of the enter command, only the bounding boxes of textfields are considered. 
 
When the b-box of the blob is to the left of the b-box of the component and the top and bottom of 
the blob b-box are within the top and bottom of the component b-box (plus some small 
threshold), then the blob b-box is considered a left match for the component. A right match is 
determined in a similar manner. 
 
If the top of the b-box of the component is within some threshold distance (which is currently 1.5 
times the height of the component b-box) from the bottom of the blob b-box and the left edge of 
either b-box is contained within the width of the other component, then the blob b-box is 
considered a above match for the component. 
 
Examples of these different types of matches are shown in Figure 7.4. 
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Figure 7.4 Comparing text blobs with textfields for matches. Bounding boxes of text blobs appear in gray and 

textboxes appear in black. Some edges of the boxes are extended to show how the boxes line up. 

7.4 Evaluating Candidate Matches 
The context of keyword pattern matching determines the strength of a match. For example, when 
using a keyword pattern to identify a textfield, a left match is considered stronger than a right 
match because text boxes are usually labeled to their left. For a checkbox, however, a right 
match is considered stronger than a left match because checkboxes are usually labeled to their 
right. To accommodate the differences between contexts, each blob-component pair is given a 
strength index as a function of the following heuristics within each context: 
 
Type. As described above, the type of match that is considered more likely is determined by the 
context of keyword pattern that is trying to be matched. These differences are summarized in 
Table 7-1. 
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Type being matched Special conditions 
Textfields, textareas, lists, and 
drop-down boxes 

The raw strength index of a right match is scaled down by 60%. 

Checkboxes and radio buttons The raw strength index of a top match or a left match is scaled 
down by 60%. 

Hyperlinks If the text blob's element is not a descendant of the link, then its 
strength index is 0. 

Push buttons If the text blob's element is not a the button itself, then its 
strength index is 0. 

Table 7-1 Special conditions for each type of component matched by this algorithm. 

E-score. A higher E-score always contributes positively to the strength index; however, the 
degree to which it contributes is determined by the context. 
 
Pixel Distance. The distance in pixels between a text blob and its component is most helpful in 
deciding which component is the best match for a blob when a blob has multiple matches of the 
same type (e.g., right, left, above) by taking a "nearest neighbors" approach. Indeed, many pages 
have textfields justified to the right of a page with their labels justified to the left, so this creates 
a large distance between the label and the textfield that should not reduce the strength of their 
association. However, consider a page that has a two-column web form: 
 
 
Name: 

 

 
Address: 

 
Figure 7.5 Labels that are candidate matches for multiple textfields 

In this case, the keyword pattern "name" would be a left match for both textfields because it lies 
to the left of each of them. Because the pixel distance between Name and the left box is less than 
the distance between Name and the right box, the match between Name and the left box should 
have a higher strength index. This is also an example of why textfields favor right matches – if it 
favored left and right matches evenly, then the field associated with Address would be 
ambiguous. 
 
Path Length. The length of the path in the DOM tree from the blob element to the component 
element is called its path length. Blobs and components that are siblings have stronger 
associations than those that are not. For example, in Figure 7.2, the path length between a text 
blob and the INPUT it is supposed to label is 3, but its path length to any other INPUT is 5.  
 
Using path length can help eliminate false positives that occur when text in one section of a page 
coincidentally lines up with a component in another section. Web portals and pages with sidebars 
are prone to this type of error, as shown in Figure 7.6. In the Figure, the text "Search" appears at 
least twice in the page. The first instance lines up with the main Yahoo! search box, and the 
second instance lines up with the Weather search box. Using the pixel distance between the blob 
and the textfield to determine the better match is error-prone when the pattern happens to appear 
at the edge of its block. Although Search the Web is be closer than Search Listings in this 
example, this is a coincidence and is not a reliable heuristic.  
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Sections of a page often map to subtrees in the DOM. Because this type of mismatch error is 
caused by matching across sections of a page, path length is a good heuristic to combat this 
problem because it will rank pairs of nodes that are closely related in the DOM higher than those 
with a more distant relationship.  
 

 
Figure 7.6 Screenshot of the Yahoo! home page with amiguous textfield match for "Search" (yahoo.com) 

The result of calculating the strength indices from these heuristics is a list of (component, 
strength) pairs ranked by strength. The algorithm returns the component of the top pair, unless 
the top two pairs have the same strength, in which case it returns ambiguous match.  If the list of 
pairs is empty, then it returns no match. Some contexts will only use a subset of these heuristics 
to calculate the strength of a pair, and then will only use the remaining heuristics in the event of 
an ambiguous match. 
 

7.5 Evaluation 
I evaluated this algorithm on the 240 names (40 for each of 6 pages) generated by Part 3 of the 
study. Its performance is shown in Figure 7.7, and the screenshots, along with some of the 
responses that users provided, appear in Figures 7.8-7.13. For each name, Chickenfoot either 
found the right textbox (Match), reported an ambiguous match (Ambiguous), or returned the 
wrong textbox (Mismatch). Precision is high for 5 of the 6 pages.  Performance is poor on the 
MIT page (shown in Figure 7.11) because it involved an ambiguous caption, and my heuristic 
algorithm does not yet recognize the disambiguation strategies used for this caption (counting 
and section headings). Also the 100% success rate on Vivisimo (shown in Figure 7.12) may be 
misleading because that page only had one textfield; however, my algorithm disregards labels 
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that it believes are unrelated, even if there is only one textfield on the page, so the result is not 
insignificant. 
 
This evaluation is only preliminary; a proper evaluation should use a larger selection of web 
sites.  Nevertheless, it suggests that keyword patterns can be automatically resolved with high 
precision. 
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Figure 7.7 Results of algorithm for resolving keyword patterns on Part 3 survey data 
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Figure 7.8 Yahoo! home page (www.yahoo.com) shown in Part 3 of the user study. Users' names for the 
search box included: "Search," "Search the Web," "First Search," and "Seach [sic] the Web Text Box." 
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Figure 7.9 Expedia home page (www.expedia.com) shown in Part 3 of the user study. Users' names for the 
return date field included: "return," "return date," "trip return," and "Return mm/dd/yy." 
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Figure 7.10 Amazon home page (www.amazon.com) shown in Part 3 of the user study. Users' names for the 
search box included: "Search Amazon," "ProductSearch," "Search1," and "search 2." 
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Figure 7.11 MIT emergency contact information page shown in Part 3 of the user study. Users' names for the 
search box included: "MI2," "Notify Mi Two," "Emergency2Mi," "backup contact mi," "Mi," "above person not 
available Mi," "Name MI," and "Contact 2 Mi." 
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Figure 7.12 Vivisimo home page (www.vivisimo.com) shown in Part 3 of the user study. Users' names for the 
search box included: "search," "web search," "Cluster," and "vivisimo search." 

 

 
Figure 7.13 Google advancd search page (www.google.com/advanced_search) shown in Part 3 of the user 
study. Users' names for the domain box included: "site," "Domain," "only from," "Advanced Search Domain," 
"domain/site," "GOOGLE," and "return results from the site or domain." 
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Chapter 8 Implementation 

 
In this chapter, I explain how Chickenfoot is implemented. I begin by describing Chickenfoot's 
internal representation of a web page, as this is the fundamental data structure that the rest of the 
system is built upon. Then I explain how Chickenfoot commands and objects operate on this 
model of the page. Subsequently, I show how this model is maintained in response to changes in 
the underlying page. Next, I reveal how Chickenfoot scripts are interpreted so that its functions 
can be called using a standard JavaScript interpreter. Finally, I explain how page loading is 
monitored so that the go command and URL triggers work as desired. 

8.1 Chickenfoot Model for a Web Page 
Chickenfoot has two copies of the DOM of a web page, one in Java and one in C++. This section 
explains the motivation for these two copies, and how the Java DOM is created from the C++ 
DOM. 

8.1.1 Motivation 
Chickenfoot leverages the LAPIS pattern library to match web page elements against text 
constraint patterns. Because LAPIS is a large codebase written in Java, and Firefox is an even 
larger codebase written in C++ and JavaScript, it is impractical to translate either codebase into 
the other’s language, so a Firefox-LAPIS bridge is employed so that Chickenfoot can use LAPIS. 
 
Fortunately, Firefox is bundled with a bridge called LiveConnect [18] that enables JavaScript to 
communicate with Java objects. Because Chickenfoot is written mostly in JavaScript, 
LiveConnect makes it fairly easy to call into LAPIS; however, the cost of calling Java from 
JavaScript is relatively expensive (see the benchmarking data in Table 8-1). To compensate, 
Chickenfoot is designed so that it makes a few calls to Java with large inputs rather than many 
calls with small inputs. 
 

Java calling Java within its own Java Virtual Machine         0.03 us/call 
JavaScript calling JavaScript within Firefox  15-20.00 us/call 
JavaScript calling Java via LiveConnect in Firefox 950-1000.00 us/call 

Table 8-1 Benchmarking data for overhead of method calls in different languages. These benchmarks were 
made on a 1.7GHz laptop running WinXP, Firefox 1.0, and Java 1.5. 
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Firefox's LiveConnect technology was a major factor when deciding which web browser to use 
for Chickenfoot. Microsoft Internet Explorer (IE) is a far more popular browser than Firefox, so 
Chickenfoot may have wider appeal if it were embedded in IE; however, it was difficult to write 
a Browser Helper Object for IE that could make calls to Java code. Also, Firefox has better 
support for Web standards, such as DOM 2 [2], that are used heavily in the Chickenfoot code 
base. Finally, Firefox is available on Windows, Mac OSX, and Linux, whereas IE is only 
available on Windows (and to some extent, on Mac OSX). 

8.1.2 Building a Bridge between Firefox and LAPIS 
For Chickenfoot to use LAPIS to find pattern matches in a DOM, it must create a mapping 
between the DOM in Firefox and the string model in LAPIS. This section explains the 
construction of this mapping, and a flow chart of how the mapping is created appears at the end 
of the section in Figure 8.3. 
 
When Firefox loads a web page, it parses the page’s HTML and automatically creates a DOM 
representation of it. Once this DOM representation has been created, the HTML source that was 
used to create it is discarded in lieu of the DOM because the well-formed, structured tree 
representation is more convenient for Firefox to work with than a raw string of HTML. 
 

In order to be sure that LAPIS is matching against the same HTML that Firefox sees, 
Chickenfoot creates a string of well-formed XHTML from the Firefox DOM, and sends it via 
LiveConnect so LAPIS can create an equivalent HTML document. As Chickenfoot does a 
preorder traversal to create this string of XHTML, it assigns each node an id number, starting at 
zero, and places each node in an array at the index that corresponds to this id. Because the id 
number is set as a property of the node, it is possible to get the id of a node in constant time. 
Similarly, because the array is indexed by node id, looking up a node by its id is also a constant 
time operation. The process of creating the XHTML from the HTML is illustrated in Figure 8.1. 
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<HTML>hi<BR\>world<P>bye</HTML> 

 
(1) Sloppy HTML received from server. <BR\> has an erroneous slash and HEAD and BODY are missing. 

 

 
 

(2) DOM created by Firefox HTML parser. Note that the parser adds missing HEAD and BODY nodes. 
 

 
 

(3) DOM nodes arranged in an array after a preorder traversal. A node's index in array serves as its id. 
 

<HTML><HEAD></HEAD><BODY>hi<BR></BR>world<P>sigh</P></BODY></HTML> 
 

(4) XHTML produced by the traversal. This XHTML is sent to Java via LiveConnect. 
Figure 8.1 Creating the XHTML in Firefox 

 
Because the XHTML produced by the traversal is guaranteed to be well-formed, LAPIS can use 
its XML parser to recreate the DOM in Java from the XHTML string. In Java, Chickenfoot uses 
the Xerces XML parser to parse the XHTML, but then it wraps each node in the Xerces DOM 
with a class called AnnotatedNode, and stores the tree of AnnotatedNodes in a class called 
MozillaDocumentParseTree. By wrapping a Xerces DOM node, an AnnotatedNode can store 
additional information about the node, such as the index of the node in a preorder traversal of the 
tree – this will be important later when mapping from a MozillaDocumentParseTree to a 
Firefox DOM. 
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Once the MozillaDocumentParseTree has been created, it needs to be flattened into a string of 
HTML because a document in LAPIS must be created from a string. Because LAPIS will delimit 
pattern matches by offsets into this string, a mapping between positions in the DOM and 
character offsets in the string is created as the DOM is flattened into HTML so that LAPIS 
pattern matches can be mapped back into positions in the DOM when necessary. The process of 
converting the XHTML to HTML in Java is shown in Figure 8.2. 
 

 
<HTML><HEAD></HEAD><BODY>hi<BR></BR>world<P>sigh</P></BODY></HTML> 

 
(1) XHTML received from Firefox to be parsed by Xerces. 
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(2) MozillaDocumentParseTree that wraps the DOM created by the Xerces XML parser. 
 

<HTML><HEAD></HEAD><BODY>hi<BR>world<P>sigh</P></BODY></HTML> 
 

(3) HTML produced by traversing the MozillaDocumentParseTree. This HTML is sent to LAPIS. 
 

Figure 8.2 Recreating the DOM and generating the HTML in Java 

Unfortunately, a LAPIS document cannot be created directly from the XHTML rather than the 
HTML because an XHTML document is not necessarily a valid HTML document. For example, 
the XHTML in Figure 8.2 has an opening and closing tag for <BR>, but according to the HTML 
4.01 specification, closing tags are forbidden on <BR> as well as some other elements. Because 
closing tags are required on all elements in XHTML [30] the XHTML must be converted to 
HTML before being passed to LAPIS. 
 
Another alternative would be for Chickenfoot to create a valid HTML string from the DOM in 
JavaScript rather than an XHTML string; however, this would take the XML parser out of the 
loop on the Java side, and so no Java DOM would be created. Without a Java DOM, it would be 
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difficult to map from LAPIS coordinates to positions in the Firefox DOM, so the additional 
mapping from XHTML to HTML must remain part of the system. 
 
It would seem that much of this complexity could be avoided if Chickenfoot simply sent LAPIS 
the URL of the page that is currently being displayed in Firefox (which would surely be less 
expensive to send over the JavaScript-Java boundary) and had LAPIS fetch the page and parse it 
itself. Unfortunately, because LAPIS does not have the same cookies, authentication, etc. that 
Firefox has, LAPIS might not get the same HTML as Firefox when it tries to access the same 
URL, so this intricate mapping must be created between Firefox and LAPIS to ensure that the 
two representations of the page are consistent. 
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Figure 8.3 Construction of Mapping between Firefox and LAPIS 

 

8.2 How Chickenfoot Operates on this Model 
As described in Chapter 3, Chickenscratch provides commands that let the user talk about 
objects in a web page in terms of the rendered model. This section explains how objects in this 
high-level model are translated to those in the lower-level DOM. 

8.2.1 How the find() Command Works 
The find command needs to be able to take a text constraint pattern and create a list of Match 
objects that correspond to the matches that LAPIS finds in the document's string model. To do 
this, the first step is to run LAPIS on the HTML that was generated from the DOM in the 
previous section. The matches found by LAPIS are represented as a RegionSet, which is a set of 
Region objects where each Region is a substring of the HTML that contains the content of the 
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pattern match. Each Region is represented by the start and end indices of the substring in the 
HTML. 
 
The next step is to map each Region into an equivalent section of the DOM called a Range. As 
described by the W3C specification, a DOM Range "identifies a range of content in a Document. 
. .It is contiguous in the sense that it can be characterized as selecting all of the content between a 
pair of boundary-points." [31] As shown in Figure 8.4, each boundary-point is defined by a node 
and an offset, so two nodes and two offsets (which are nonnegative integers) completely 
determine a Range. For a boundary-point whose node is a text node, its offset is a 0-based index 
into the node's text string. For all other boundary-points, its offset is the node's position among 
its siblings. 
 

 
Figure 8.4 Illustration of a Range [32] 

 
Therefore, to convert a Region to a Range, the start and end indices of the Region need to be 
converted into boundary-points. This is done by finding the most specific node that contains the 
index. Consider the HTML created from the DOM in the previous section: 
 

<HTML><HEAD></HEAD><BODY>hi<BR>world<P>sigh</P></BODY></HTML> 

 
The Regions that correspond to the nodes in the DOM are as follows: 
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Id Node Value Region 
0 <HTML> [0, 61] 
1 <HEAD> [6, 19) 
2 <BODY> [19, 54] 
3 "hi" [25, 27) 
4 <BR> [27, 31] 
5 "world" [31, 36] 
6 <P> [36, 47] 
7 "sigh" [39, 43] 

Table 8-2 Regions for DOM nodes 

To find the boundary point for index 41, consider each node and see if 41 is within its Region. It 
turns out that the Regions for nodes 0, 2, 6, and 7 all contain index 41; however, node 7 has the 
smallest Region containing 41, so it will be the node for 41's boundary-point. Because Regions 
for nodes are strictly nested, there must always be a smallest Region that contains an index. 
 
Id Node 

Value 
Region  

0 <html> [0, 61]  
1 <head> [6, 19]  
2 <body> [19, 54]  
3 "hi" [25, 27]  
4 <br> [27, 31]  
5 "world" [31, 36]  
6 <p> [36, 47]  
7 "sigh" [39, 43]  
    

 
Figure 8.5 Finding the node for the boundary-point for index 41 

 
Since the start index for node 7 is 39, then the offset of 41 within node 7 is (41 – 39) or 2, so the 
offset for 41's boundary-point is 2. 
 
When each node knows the indices of the Region that covers it, an index can be converted into a 
boundary point in O(b logb N) time where N is the number of nodes and b is the branching factor 
of the DOM tree. As the start and end indices are included in each AnnotatedNode as the 
MozillaDocumentParseTree is built, converting indices to boundary-points does indeed run in 
O(b logb N) time. 
 
Things become slightly trickier when a coordinate coincides with the beginning or end of a node. 
For example, index 43 (the < in </P>) could be considered the boundary point at node 7 with 
offset 4, or the boundary point at node 6 with offset 1. Chickenfoot prefers mapping Regions to 
elements rather than substrings, so the Region [39, 43] would be mapped to the boundary-point 
at node 6 with offsets 0 and 1 rather than the boundary-point at node 7 with offsets 0 and 4. 
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Elements are preferred to substrings because moving nodes in the DOM is simpler than moving 
text, as shown in section 8.3.1.  
 
Because the Firefox DOM and the Java DOM are identical trees, the index of a node in a 
preorder traversal in one tree can identify the corresponding node in the other. Thus, a Range can 
be sent across the JavaScript-Java boundary as two pairs of integers where each pair represents a 
boundary-point such that the first integer is the index of the node and the second integer is the 
offset. For example, the Range covering the children of <BODY> could be expressed as 
((2,0),(2,4)).This establishes a consistent mapping between LAPIS Regions and DOM Ranges. 
 
Once find has a Range that corresponds to each match found by LAPIS, the final step is to 
create a Match object for each Range. The fields of a new Match object are a populated by a 
Range by the rules in Table 8-3. 
 
next a reference to the empty Match 
hasMatch true 
count 1 
index 0 
range a reference to the Range 
content a DocumentFragment cloned from the Range 
element if the Range delimits a single Element node, then element is non-null 

reference to that Element; otherwise, it is null 
document the HTMLDocument that range belongs to 
html the HTML produced by a preorder traversal of the Range 
text range.toString() 

Table 8-3 Rules for creating a Match from a Range 

 
As find converts each Range to a Match, it builds up a linked list of Matches and returns a 
reference to the first Match in the sequence. 
 
The implementation of find is outlined in a flow chart in Figure 8.6.  
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HTML HEAD BODY P“hi” BR “world” “sigh”

0 1 2 3 4 5 6 7

 
 

Figure 8.6 Implementation of find 

 

8.2.2 How the insert() and remove() Commands Work 
insert and remove work by translating their arguments into nodes and then using standard 
methods for adding and removing nodes to mutate the DOM. Recall that the definitions of the 
functions are as follows: 
 
insert(Position position, Chunk chunk) // returns a Chunk 
remove(Pattern pattern)                // returns a Position 

 
insert converts a Position into a collapsed Range, which is a Range whose start and end 
boundary-points are the same. It then converts a Chunk into a node, and uses the insertNode 
method of the Range to insert the node into the DOM. 
 
Because a Position is a Pattern, converting a Position into a Range can be broken into cases. 
Recall that a Pattern is one of five types, two of which are strings, so the four cases are as 
follows: 
 

• String. Use the string as an argument to find to get a Match. This reduces the String 
case to the Match case. 

• Match. Return its range. Note that this may be null. 
• Node. Create a new Range whose start and end container is the node's parent node and 

whose start and end offsets delimit the node. 
• Range. Already a Range. 
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If the Range produced by this conversion is null or is not a collapsed Range, then insert will 
throw an error, as specified. 
 
The process of converting a Chunk into a node may also be broken into cases: 
 

• String. Use the current document to create a Range and pass the string to the Range's 
createContextualFragment() method which will produce a DocumentFragment which 
is a subtype of node. 

• Match. If the Match's range is available, this reduces to the Range case. If range is null, 
then the Match's html is used, and this reduces to the String case. 

• Node. Already a node. 
• Range. Use the Range's cloneContents() method to get the Range as a 

DocumentFragment, which is a subtype of node. 
• Link or Button. Already an element node. 

 
remove is implemented by converting a Pattern into a Range and then invoking the 
deleteContents() method of that Range. A side-effect of invoking deleteContents() is that 
it collapses the Range, so once the Range has been collapsed, it is a valid Position that can be 
returned by remove. As the algorithm for converting a Pattern into a Range is defined above, 
implementing remove is trivial. 

8.3 Updates to the Model 
Because Chickenfoot uses data structures that are built on top of the DOM and its derivative 
Ranges, changes to either of these objects must trigger updates to Chickenfoot's data structures to 
reflect the objects' new state. How Chickenfoot is notified of these changes and how it deals with 
them is explained in this section. 

8.3.1 Updates to the DOM 
There are three types of changes that can be made to the DOM: a node can be inserted, removed, 
or mutated. Fortunately, the DOM allows clients to add themselves as listeners for each of these 
events, which Chickenfoot does. 
 
When a node is added to the DOM, the node and its descendants are traversed to create a string 
of XHTML in the same way an HTML document is flattened. During the traversal, the nodes are 
assigned ids (starting with the last available id for the DOM) and are added to the id-indexed 
array of nodes for the document. Once this is complete, the XHTML is sent over the JavaScript-
Java boundary, along with the id of the parent of the node that was inserted and the node's index 
within its siblings. This information is sufficient to update the Java DOM.  
 
In Java, the XHTML is parsed as before, and it also numbers these new nodes starting with the 
last available id. It looks up the parent node by id number, and inserts the subtree that it has 
created from the XHTML at the specified index among its children. This ensures that the Java 
DOM is still identical to the Firefox DOM, and that the id numbers used in both DOMs are 
consistent. 
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When a node is removed from the DOM, only the id of the node that was removed needs to be 
sent to Java. When the Java DOM receives this id, it simply removes it from its DOM, as well. 
 
There are two types of node mutations that can occur in the DOM: changing the text of a text 
node and changing the attribute of an element. To notify the Java DOM of a change to a text 
node, only the id of the node and the new text of the node need to be sent. The message for an 
attribute update is also simple, requiring the id of the node whose attribute was changed, and two 
strings, one for the key and one for the value of the attribute. These updates are simple to 
perform on the Java DOM.   
 
After any of these three mutations to the Java DOM, Chickenfoot must also regenerate the 
HTML from the DOM so that it can create a new document in LAPIS. Fortunately, LAPIS has a 
mechanism for creating mappings from old versions of documents to new ones, so this is used so 
that matches in the old DOM can be translated to matches in the updated DOM. 

8.3.2 Updates to Ranges 
A Range over a DOM might not contain the same content after the DOM has been mutated. 
Although the DOM 2 Range Specification defines a policy for Range modification under DOM 
mutation, Chickenfoot adds two improvements to the standard policy. As shown in Table 3-1, a 
Match can be completely determined by its range, so enusring that Ranges match the same 
content after mutations to the DOM is sufficient for ensuring that Matches match the same 
content, as well. 
 
The DOM 2 Range specification states the following: 
 

2.12 Range modification under document mutation 
There are two general principles which apply to Ranges under document 
mutation: The first is that all Ranges in a document will remain valid after any 
mutation operation and the second is that, as much as possible, all Ranges will 
select the same portion of the document after any mutation operation. 

 
It then goes on to define the following policy for updating Ranges under insertions: 
 

2.12.1 Insertions 
An insertion occurs at a single point, the insertion point, in the document. For any 
Range in the document tree, consider each boundary-point. The only case in 
which the boundary-point will be changed after the insertion is when the 
boundary-point and the insertion point have the same container and the offset of 
the insertion point is strictly less than the offset of the Range's boundary-point. In 
that case the offset of the Range's boundary-point will be increased so that it is 
between the same nodes or characters as it was before the insertion. 

 
The above policy for insertion is not as good as it should be in terms of maintaining the second 
general principle listed in 2.12. For example, consider the following HTML: 
 

<P><I>thing1</I><I>thing2</I></P> 
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and Ranges R1 and R2 that match the <I> elements: 
 

R1 = [ (<P> , 0) , (<P> , 1) ], so R1 corresponds to <I>thing1</I> 
R2 = [ (<P> , 1) , (<P> , 2) ], so R2 corresponds to <I>thing2</I> 

 
 

 
Figure 8.7 DOM with Range content outlined with ovals 

 
Consider what happens when <b>bold</b> is inserted before <i>thing2</i>. Because “the 
only case in which the boundary-point will be changed after the insertion is when the boundary-
point and the insertion point have the same container and the offset of the insertion point is 
strictly less than the offset of the Range’s boundary-point,” the only boundary point that gets 
changed is the endpoint of R2. Therefore, after the insertion: 
 

R1 = [ (<p> , 0) , (<p> , 1) ], so R1 corresponds to <i>thing1</i>  
R2 = [ (<p> , 1) , (<p> , 3) ], so R2 corresponds to <b>bold1</b><i>thing2</i> 

 

 
Figure 8.8 DOM with Range content outlined with ovals after insertion 
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Clearly, R2 does not select the same portion of the document after the mutation operation. This 
would be a problem for a Match that had R2 as its Range because its toString() method would 
return a different value after the new node was inserted even though the new node should have 
no effect on the Match. If the Range update policy were such that R2 would be [ (<p> , 2) , (<p> , 
3) ] after the mutation, then the Match would be consistent. Therefore, Chickenfoot uses the 
following policy to update Ranges, in addition to the DOM 2 policy: 
 
For any Range in the document tree, consider each boundary-point. The boundary-point will 
also be changed after the insertion when the boundary-point is a startpoint of a Range, the 
startContainer is not a text node, and the insertion point is equal to the boundary-point. In 
that case the offset of the Range's boundary-point will be increased so that it is at the start of 
the same node as it was before the insertion. 
 
But what about the case where the container of the boundary-point lies inside a text node? In this 
case, the update is more complicated because it involves creating new nodes. Consider the 
following HTML: 
 

<body>My cat’s breath smells like cat food.</body> 

 
and Ranges R1 and R2 that match the string cat: 
 

R1 = [ (#text1 , 3) , (#text1 , 6) ], so R1 corresponds to the first appearance of cat  
R2 = [ (#text1 , 28) , (#text1 , 31) ], so R2 corresponds to the second appearance of cat 

 

 
 

Figure 8.9 DOM with Range content outlined with ovals 

Doing an insert of a new text node containing the string monster at [ (#text1 , 6)] produces the 
following: 
 

R1 = [ (#text1 , 3) , (#text1 , 6) ], so R1 corresponds to the first appearance of cat  
R2 = [ (#text1 , 6) , (#text1 , 6) ], so R2 corresponds to a point between #text1 and #text2 
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Figure 8.10 with Range content outlined with ovals after insertion 

Now there are three text nodes that are consecutive children of <body>: 
 
#text1 is My cat 
#text2 is monster 
#text3 is ’s breath smells like cat food. 
 
Note that #text1 has not been replaced with a new node with different text. Instead, the value of 
#text1 has been changed to the new text. Whether #text1 should be mutated or replaced is not 
specified by the DOM specification; however, Firefox implements the specification by mutating 
the first node. 
 
In this case, we want R2 to point to a node that did not exist before the insertion was made. Note 
that in this case, R2 satisfies the original requirements for changing its boundary point, in that the 
offset of the insertion point is strictly less than the startpoint for R2; however, the update for R2 
still fails to change R2 in such a way that it still selects the same portion of the document. Again, 
since the original selection for R2 is now at [ (#text3 , 22), (#text3, 25) ], this suggests that the 
rules for updating Ranges after mutation can be improved upon even further to accommodate 
nodes that are created as a result of insert(). To this end, Chickenfoot uses the following policy 
for updating Range boundary-points upon insertion, in addition to the DOM 2 policy: 
 
If an insertion point lies within a text node, consider all Ranges in the document tree that have 
a boundary-point whose container is equal to the text node. If the boundary-point is before or 
equal to the insertion point, then both the container for the start or end (depending on the type 
of boundary point) will be changed to the new text node that was created, and the offset will be 
changed to (oldOffset – oldNode.nodeValue.length). 
 
To implement these policies, Chickenfoot needs to know about every Range that has been 
created in the DOM, and to update each one whenever a node is removed or inserted. Section 
8.3.1 already explained how these mutation events can be captured, but getting a reference to all 
of the Ranges is still a problem. 
 
Because the only way to create a Range in the DOM is to call its createRange method, 
Chickenfoot replaces this method with one that delegates to the original method to create the 
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Range, but then keeps a reference to it before it is returned to the client. This collection of 
references is stored so that a Range can be looked up in constant time when the node for either of 
its boundary-points is mutated. When a mutation occurs, potentially affected Ranges are 
inspected, and the Chickenfoot policies for Range modification under document mutation are 
applied, if necessary. 

8.4 How Chickenfoot Scripts are Interpreted 
Firefox renders the DOM to produce the graphical view of the web page that the end user sees. 
Any change to the underlying DOM is reflected immediately in the rendered view of the web 
page, so Chickenfoot scripts effectively work by manipulating the DOM. 
 
In Firefox (and in most browsers), users can manipulate the DOM in JavaScript through an 
object named document. Chickenfoot builds upon this DOM access by creating an extended 
JavaScript environment called an evaluation context in which Chickenfoot scripts are evaluated. 
In this way, a Chickenfoot script can have access to all of the objects and functions that a 
JavaScript programmer is accustomed to having, in addition to the higher-level objects and 
functions that Chickenfoot provides. This is accomplished by taking the text of a Chickenfoot 
script as a string and evaluating it inside of the evaluation context by using the with and eval 
functions in JavaScript: 
 
// the variable, script, passed to this function 
// is the source code of the user's script as a string 
function interpret(script) { 
 
  // This is the evaluation context for the script. 
  // Familiar objects, such as document, are defined here, 
  // in addition to Chickenfoot commands, 
  // such as find() and click(). 
  evaluationContext = { 
    document getter : function() { return getDoc(); },  
    find            : function(pattern) { ... }, 
    click           : function(pattern) { ... }, 
    ... 
  }; 
 
  // this evaluates the script in the evaluation context 
  with (evaluationContext) { 
    eval(script); 
  } 
 
} 

 
Though the use of with in JavaScript is frowned upon because it is often misused [33], it is used 
appropriately in Chickenfoot. Misuse occurs when the client tries to assign a value to a non-
existent field to the object added to the scope chain by with: 
 
var x = { a : 2 } 
 
with (x) { 
  this.a = 3 
  this.b = 4 // b is not defined in x, so this has no effect 
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} 
 
alert(x.a + x.b) // displays NaN because x.b is undefined 

 
In the code above, x.a is changed from 2 to 3, but b is not added as a field of x, as the user might 
expect. Because b was not defined in x before the with statement, its assignment inside the with 
statement has no effect. In Chickenfoot, this is not a concern because the with statement is not 
used to assign values to evaluationContent; instead, it is used to run user code in an 
environment where Chickenscratch commands are in scope, which it does as desired. 

8.5 Monitoring Page Loads 
It is important to keep track of when web pages are loading in Firefox so that Chickenfoot does 
not try to operate on partially-loaded pages. This section explains how page loads are monitored, 
and how Chickenfoot uses this information to suspend an operation until a page has finished 
loading. 
 

8.5.1 Listening for Load Events 
Firefox provides a ProgressListener interface that is notified upon updates to the progress bar: 
this includes the beginning and end of a page load, including some intermediary updates about 
what percentage of the page has been downloaded thus far. There is also a LoadListener interface 
that is notified when a page is completely loaded into the browser. Unfortunately, the 
ProgressListener reaching 100% does not precisely coincide with a load event because Firefox 
takes some additional time to finish processing the HTML after it has received all of the bytes 
from the server. 
 
A web page in Firefox is displayed inside a tab, and Chickenfoot keeps track of the loading state 
of each tab in the browser. First, it registers with Firefox as ProgressListener and a LoadListener. 
When it receives a STATE_START event from the ProgressListener, it checks the event to see 
which tab triggered it, and marks that tab as loading. When it receives a LOAD event from the 
LoadListener, it also checks the event to see which tab triggered it, and marks that tab as loaded. 

8.5.2 Waiting Until a Load is Complete 
In the current implementation of Chickenfoot, all accesses to a web page go through the 
document object. In the evaluation context described in section 8.4, document is a reference to a 
function that returns an object that wraps the DOM rather than returning a reference to the DOM 
itself. By making document a function, Chickenfoot can suspend itself until the DOM has 
finished loading. This is completely abstracted from the user. 
 
When document is called, it asks the browser which tab is currently in focus. Once it finds that 
tab, it asks it which state it is in. If it is in the loaded state, then it returns the tab's DOM 
immediately. Otherwise, the tab is in the loading state, so the tab is polled in 100ms intervals 
until it is loaded, at which point the DOM is returned. 
 
Using this approach, a Chickenfoot script can fire commands that start loading pages, and the 
script can continue executing in parallel with the loads until it reaches a point where it tries to 
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access a page that is in the middle of loading. When that happens, the script will suspend 
execution until the load is complete, and will resume when the page is loaded. This allows end-
users to write scripts without having to worry about this synchronization. 

8.5.3 Using Page Loads for URL Triggers 
Because Chickenfoot is receiving LOAD events, it uses these events to fire URL triggers. Upon 
receiving a LOAD event, Chickenfoot looks through the list of URL triggers that the user has 
defined. For each one, it tries to match the URL of the page that has been loaded against the 
trigger's URL pattern. If the loaded page matches the regexp for the URL pattern, then it runs the 
script associated with the trigger. 
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Chapter 9 Conclusion 

 
Chickenfoot is a web automation toolkit designed to make it easy for end-users to develop scripts 
to change their web experience: its command language abstracts the underlying representation of 
a web page so that users can operate on it at high level, its development environment is 
conducive to experimentation so scripts can be prototyped quickly, and its trigger system makes 
it possible to seamlessly integrate user customizations into everyday browsing. 

9.1 Contributions 
In this thesis, I have introduced a system, Chickenfoot, that empowers end-user programmers to 
automate and customize web pages without viewing their HTML source. I have done this by 
integrating programming and pattern languages that are focused on describing commands and 
objects relevant to interactions with web pages. 
 
As part of Chickenfoot's language, Chickenscratch, I have introduced keyword patterns, which 
are patterns that use the spatial location of keywords in a web page to identify page elements. 
The web survey data that I provide supports the usability of this technique. I have also presented 
an algorithm for resolving keyword patterns, and have demonstrated its success on a modest 
amount of training data. 
 
By embedding Chickenfoot in the Firefox web browser, I have created a development 
environment that encourages experimentation and spontaneity in web scripting. My environment 
provides tools that help the user create and debug Chickenscratch code. As a side-effect, I have 
also created an application for developing JavaScript programs and extensions to Firefox. 
 
I have introduced the rendered model of a web page, which builds upon the Document Object 
Model that most web browsers use. In creating this model, I offer improvements to the W3C 
DOM specification for updating Ranges of a DOM under mutation. 
 
Finally, by enabling users to store scripts as triggers, I have given end-user programmers the 
ability to automate and customize their web experience. 
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9.2 Future Work 
Though the core of the Chickenfoot system has been implemented, there are still many 
extensions to the system that we would like to implement. 

9.2.1 Packaging Scripts 
Package Chickenfoot script as a standalone Firefox extension. 
Currently, if a user wishes to run a Chickenfoot script that someone else has created, then he 
must get its source code, install Chickenfoot, and run the code. It would be much easier if the 
script author could package his script as one file that a user could install and run without 
downloading Chickenfoot. For Firefox, the logical thing to do is to package the Chickenfoot 
script as its own Firefox extension. As a Firefox extension is bundled as a single XPI file 
(pronounced "zippy"), and can be installed by clicking on a hyperlink on a web page, packaging 
Chickenfoot scripts as XPIs would make it simpler for script authors to deploy their creations to 
users. 
 
A tool was recently created to package Greasemonkey scripts as a XPIs,[34] so it should not be 
difficult to create a analogous tool for Chickenfoot. This packaging tool would take a script and a 
trigger (which is effectively a URL pattern), and in turn create a Firefox extension that ran the 
script whenever the user visited a page that matched the trigger pattern. The extension would 
expose the trigger as a setting that could be overridden by the end-user.  
 
Because packaging the script as an extension would not expose the code to the user, Chickenfoot 
should also have the ability to read XPI files, so script authors could share code in this way, as 
well. This would also make it easier to explore existing Firefox extensions that were created with 
tools other than Chickenfoot. 
 
Package Chickenfoot script so it can run as a function on a mobile device. 
It is difficult to browse the Web on mobile devices because of the small screen and the absence 
of a full keyboard. Despite this, many users want to be able to browse the Web from their cell 
phone so they can get driving directions and other information from the Web that is particularly 
useful when they are away from their computers. Alex Faaborg, a student at the MIT Media Lab, 
notes the following when discussing his own macro recorder for the Web: 
 

I believe that one of the reasons Web browsing doesn't work well on mobile 
devices is that users don't want to browse on mobile devices; they want to quickly 
and easily retrieve a specific piece of information, or complete a specific action. 
One of the benefits of [my] application is that it reduces complex processes on the 
Web to their minimum input and output. Users could record a process on the web, 
and then copy that process onto their mobile device. . . The process of logging in 
and retrieving this information using a full sized computer display can be reduced 
to a single click on a cell phone. [35] 
 

It should be possible to package Chickenfoot scripts in the same way, minimizing processes on 
the Web to their minimum input and output, so that users can easily do the tasks that are most 
important to them on their mobile device, even if general web browsing is difficult. 
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9.2.2 By Demonstration 
Make actions logged in the Actions pane on par with those recorded in WebVCR. 
The user actions logged in the Actions pane are minimal: only page navigations are recorded in 
the current implementation of Chickenfoot. This is unfortunate because a better logging system 
would make it possible for users to demonstrate their activity in the browser and copy the content 
of the Actions pane rather than trying to compose a script on their own and making errors. This 
could help novice users learn the Chickenfoot language, as well. 
 
By taking the approach used in WebVCR, listeners could be added to web forms when a page is 
loaded so that all user input could be logged. For example, after a user does a search from the 
Google home page, the content of the Actions pane would be: 
 
go('http://www.google.com/') 
enter('search terms') 
click('Google Search') 
 
Duplicating the work of WebVCR to add the listeners is not difficult; however, translating the 
actions into appropriate Chickenfoot code is a challenge. Currently, when a user writes a 
Chickenfoot script, he provides a keyword pattern that Chickenfoot resolves to a web 
component. But to do the converse, that is, to take a web component and create a keyword 
pattern for it, is its own research problem. For example, consider the log of a user doing a web 
search on Yahoo! instead of Google: 
 
go('http://www.yahoo.com/') 
enter(???, 'search terms')   // what should replace ??? 
click('Search the Web') 
 
Determining how to name the textfield is an open question. "Search the Web" would 
probably be the most intuitive name for the user, but "Images" also matches the correct 
textfield. Coming up with candidate keyword patterns for a component and choosing the best one 
is an open problem for Chickenfoot. 
 
Enable user to discover patterns by selecting content in a web page. 
Some patterns are difficult or tedious for a user to define in Chickenfoot. For example, a 
reasonable attempt at a LAPIS pattern for a Google search result is: paragraph just 
before hostname. But coming up with this pattern may require the user to do some 
prolonged experimentation in the Patterns pane; and further, this pattern does not even reliably 
match Google search results. Rather than go through the process of trial-and-error, it would be 
quicker for a user to select an example of a Google search result in the page and have LAPIS 
suggest patterns to the user. LAPIS already supports pattern-suggestion in the standalone 
version, so it is simply a matter of porting this functionality over to Chickenfoot.  
 
Build a programming-by-demonstration (PBD) system on top of Chickenfoot. 
As Chickenfoot is targeted at end-user programmers, it would be even easier for novice 
programmers to learn if they did not have to write any code at all! This could be done by adding 
functionality to Chickenfoot to make it behave like a macro recorder, such as WebVCR or 
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LiveAgent, where the user explicitly records the task they would like to automate. However, a 
more interesting system would be one that could data mine the history of a user's web activity for 
usage patterns, and then suggest and write scripts that would automate actions that the user 
appeared to do often. 
 
Automatic discovery of web services. 
Web pages are subject to change in ways that break Chickenfoot scripts. On the other hand, web 
services are stable APIs that are unlikely to change. Sites such as Amazon and Google provide 
web services that allow users to make programmatic queries that are equivalent to the ones that 
they do by filling out web forms on the same site. 
 
It would be helpful if Chickenfoot could examine the history of queries that a user made to a web 
site, and their results, and then compare them to the results of doing the same queries through the 
site's web services. If it found a match, then it could create a Chickenfoot function that abstracted 
the SOAP calls to the web service. This would give the user reliable programmatic access to the 
information that he wants. 
 
Such a system could be implemented by using UDDI [36] to find out if a site provides web 
services. Once it discovered the web services, it could use a brute-force approach, trying the 
user's inputs on each service the site provides and comparing the web service output to the 
content the user sees in a web page when he does the same query. This approach may not be 
efficient, but it suggests that a solution is possible. 

9.2.3 User Interface 
Provide a graphical view of a Chickenfoot script. 
For commands that deal with automating web forms, it would be helpful for users to be able to 
see the component that the command would affect. For example, displaying the button or 
hyperlink that would be matched by the Pattern argument to a click command would help 
users predict the effects of running their script. Also, in the event that a web page changed so that 
the Pattern now matched a different link or button, the user would be more likely to notice the 
change before running the script because he would see that the image of the component had 
changed. 
 
Provide a Chickenfoot interpreter or multiple editors. 
When users are developing a script in Chickenfoot, there is often a portion of the script that the 
user has completed as well as a portion of the script that the user is experimenting with. 
Unfortunately, there is only one editor, so both portions of the script are in the same buffer and 
the user is frequently commenting and uncommenting portions of the script. The user should be 
able to have separate space for code that is working and code that is under development. 
 
One approach is the one employed by StarLogo [37], which is a programming environment for 
creating simulations that is aimed at middle school students. Its editor is split into a top and 
bottom pane where the top pane is a StarLogo interpreter and the bottom pane contains functions 
that the user has created. This allows the user to experiment in the top pane and move completed 
code into the bottom pane. 
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Another solution would be to have a tabbed pane of Chickenfoot editors instead of only one 
editor. This way, the user could have more control over how he broke up his code. One drawback 
of this design, however, is that the user would not be able to view code from more than one 
editor simultaneously. 
 
In either case, sufficient prototyping and user testing should be done to determine how the 
interface could provide better support for script development. 
 
Support Bookmark Triggers. 
One of the major uses of Chickenfoot is to automate navigation, especially to "hard to reach" 
pages. As users use bookmarks to automatically take them to a page, they should be able to 
access Chickenfoot scripts from the Bookmarks menu that do that, as well. Bookmarks that are 
Chickenfoot scripts should appear the same as other bookmarks in the browser to provide 
seamless integration. 

9.2.4 Robustness 
Attempt to identify when a script breaks as a result of a change in a web site. 
A Chickenfoot script may suddenly stop working if a web site changes such that a Chickenfoot 
pattern no longer becomes valid. In this case, it would be ideal if Chickenfoot could recognize 
the error and alert the user to fix it (or even fix the script itself) rather than failing silently or 
ploughing along ignoring the error, ultimately returning the wrong result. 
 
One solution would be to store the XPath of each component identified by a pattern in a 
Chickenfoot script. When the script is run subsequently, Chickenfoot could calculate the tree edit 
distance between the XPath of the component currently identified by the script and the XPath of 
the component identified by the script the last time that the script was run. If the tree edit 
distance exceeds a certain threshold, then the script should abort and warn the user that it 
believes that the pattern used to identify the component may no longer be valid. 

9.2.5 Extensions to Pattern Language 
Support CSS patterns. 
Because Chickenfoot users should be able to talk about the page on the rendered level, they 
should also be able to use colors and other CSS styles to identify parts of a web page. For 
example, "green text with black background" should be a valid pattern for matching text. As the 
DOM has references to style sheets and style data for its elements, it should be possible to 
programatically resolve CSS patterns with the elements the user is trying to identify. 
 
Support above and below as relational operators. 
Users should be able to use above and below as operators in the pattern language. For example, 
a user should be able to use image above textbox to identify the logo on the Google home 
page. Even though above and below are not constraints that can be applied to the string model as 
other TCs can, they should be adopted as part of the TC pattern language so their usage is 
consistent with other relational operators, such as just before and containing. 
 
Let users define patterns. 
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In LAPIS, users are able to define their own patterns in terms of the existing pattern language. 
This functionality should be made available through Chickenfoot's interface. Care must be taken 
so that users who share scripts that use patterns they have defined will be sure to deploy their 
user-defined patterns with the script.  

9.2.6 Extensions to Command Language 
Provide a simpler idiom for iterating over Match objects. 
The following syntax for iterating over Matches would be simpler for users to read and to write: 
 
for (m in find(pattern)) { 
  ... // use m 
} 

 
Unfortunately, JavaScript interpreters only support this syntax for enumerating keys in an 
associative array. Because only strings can be keys, it is impossible to use this syntax for 
enumerating over any other type. This presents a problem for Chickenfoot because the desired 
syntax shown above is intended to enumerate Match objects, not string objects. However, this 
problem can be solved by rewriting every instance of this: 
 
for (A in B) { 
  ... 
} 
 
as this: 
 
var b = B 
if (b instanceof Match) { 
  for (A = b; A.hasMatch; A = A.next) { 
    ... 
  } 
} else { 
  for (A in b) { 
    ... 
  } 
} 

 
before passing the script to the JavaScript interpreter. This rewriting would most likely have to 
be performed on the abstract syntax tree (AST) of a script, which unfortunately is not exposed by 
the  Firefox JavaScript interpreter. Rhino [38] is an open-source JavaScript-1.5-compliant 
interpreter written in Java that provides access to the AST, so hopefully it can be incorporated 
into Chickenfoot to perform this translation. 
 
Enable users to tag semantic web data and refer to ontologies in Chickenfoot scripts. 
If a web page contains semantic web data, then that data should be accessible and scriptable with 
Chickenfoot. In general, semantic web data will be a more reliable wrapper for information in a 
page than a Chickenfoot pattern will, so giving Chickenfoot users access to this wrapped data 
will enable them to write more reliable scripts. Rather than creating a new system for detecting 
and processing semantic web data in a page, Chickenfoot should be integrated with an existing 
system, most likely Piggy-Bank [39]. 
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Reduce the amount of quoting used in Chickenfoot scripts. 
Chickenfoot scripts often contain many quote characters because keyword and TC patterns 
appear frequently. Users also construct HTML content from strings, which must be quoted, and 
the HTML content often contains quotes, as well. This can make it difficult to read and write 
Chickenfoot scripts. Ideally, quotes would only have to be used to delimit a string when string 
boundaries are ambiguous. 
 
Add support for other forms of input and output. 
Users may want to read or write data from files or databases as part of a Chickenfoot script. 
Though this is possible to do by scripting XPCOM objects provided by Firefox, the interfaces for 
these objects are not appropriate for end-user programmers, so they should be wrapped by 
appropriate, built-in Chickenfoot commands. 

9.2.7 Evaluation 
Have a "bake-off" between Greasemonkey and Chickenfoot. 
Chickenfoot has not been tested in a formal user study to see how it compares to other web 
automation tools. Because Greasemonkey is also a Firefox extension that enables users to 
automate and customize the Web by writing JavaScript code, it is an appropriate tool to use for 
comparison against Chickenfoot. Running a "bake-off" study in which users are given the same 
set of tasks, some using Chickenfoot and some using Greasemonkey, would provide an estimate 
on how much of an advantage the Chickenfoot language and development environment provide, 
if any. 
 
Use data from the Wayback Machine to test how robust Chickenfoot scripts are over time. 
The Internet Archive Wayback Machine [40] is a collection of 40 billion web pages archived 
from 1996 onward. It allows users to view a web site at different points in time over the course 
of its history. Chickenfoot scripts could be written to automate early versions of a web site, and 
then could be tested to see if they still worked as the web site changed. This could also be done 
by scripts developed in other toolkits to serve as a basis for comparison of the robustness of 
Chickenfoot scripts. 
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Appendix A Chickenscratch Reference 

The following predefined objects and functions are available in Chickenscratch. 
 
 
Standard JavaScript functions: 
 
back() 
forward()  

 
Standard JavaScript objects: 
 
window 
document 
location 
frames 
history 
screen 
status 
top 
navigator 

 
Chickenscratch pattern functions: 
 
find 
before 
after 

 
Chickenscratch web form functions: 
 
click 
enter 
check 
uncheck 
pick 
 
 

Chickenscratch navigation functions: 
 
go 
fetch 
openTab 
selectTab 
closeTab 

 
Chickenscratch page mutation functions: 
 
insert 
remove 
replace 

 
Chickenscratch editor functions: 
 
output 
clear 

 
Miscellaneous functions: 
 
sleep 

 
Chickenfoot objects: 
 
Match 

 
Chickenfoot types: 
 
Pattern 
Position 



Appendix B  Partitioning HTML Tags 

This is the list of HTML tags that are considered partitioning (Section 7.1) in the keyword 
pattern algorithm: 
 
<A> 
<ABBR> 
<ACRONYM> 
<ADDRESS> 
<APPLET> 
<AREA> 
<B> 
<BASE> 
<BASEFONT> 
<BDO> 
<BIG> 
<BLOCKQUOTE> 
<BODY> 
<BR> 
<BUTTON> 
<CAPTION> 
<CENTER> 
<CITE> 
<CODE> 
<COL> 
<COLGROUP> 
<DD> 
<DEL> 
<DFN> 
<DIR> 
<DIV> 
<DL> 
<DT> 
<EM> 
<FIELDSET> 
<FONT> 

<FORM> 
<FRAME> 
<FRAMESET> 
<H1> 
<H2> 
<H3> 
<H4> 
<H5> 
<H6> 
<HEAD> 
<HR> 
<HTML> 
<I> 
<IFRAME> 
<IMG> 
<INPUT> 
<INS> 
<ISINDEX> 
<KBD> 
<LABEL> 
<LEGEND> 
<LI> 
<LINK> 
<MAP> 
<MENU> 
<META> 
<NOFRAMES> 
<NOSCRIPT> 
<OBJECT> 
<OL> 
<OPTGROUP> 

<OPTION> 
<P> 
<PARAM> 
<PRE> 
<Q> 
<S> 
<SAMP> 
<SCRIPT> 
<SELECT> 
<SMALL> 
<SPAN> 
<STRIKE> 
<STRONG> 
<STYLE> 
 
<SUB> 
<SUP> 
<TABLE> 
<TBODY> 
<TD> 
<TEXTAREA> 
<TFOOT> 
<TH> 
<THEAD> 
<TITLE> 
<TR> 
<TT> 
<U> 
<UL> 
<VAR> 
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