End-User Programming for the Web
by

Michael Bolin

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 6, 2005
© Michael Bolin, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

AUENOT . . L
Department of Electrical Engineering and Computer Science
May 5, 2005

Certified by.o
Robert C. Miller
Assistant Professor
Thesis Supervisor

Accepted DY . ..o

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

End-User Programming for the Web
by
Michael Bolin

Submitted to the
Department of Electrical Engineering and Computer Science

May 6, 2005
In partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

ABSTRACT

On the desktop, an application can specify its user interface down to the last pixel, but on the
World Wide Web, a content provider has little control over how the client will view the page
once it has been delivered to the browser. This creates an opportunity for end-users who want to
automate and customize their web experiences, but the growing complexity of web pages and
standards prevents most users from realizing this opportunity. This thesis describes a
programming system named Chickenfoot that enables end-users to automate, customize, and
integrate web applications without examining their source code. It accomplishes this by
embedding a programming environment directly into the Firefox web browser, where end-users
can interactively develop programs that manipulate the interfaces of web pages. The design and
implementation of the system's language are described, as well as the results of a user study that
influenced the design. A range of applications built using Chickenfoot are also presented.

Thesis Supervisor: Robert C. Miller
Title: Assistant Professor

Acknowledgments

I would like to thank Rob Miller for being incredibly generous with his time and constantly
supporting of my work. I know of no other thesis adviser who takes such a strong and active
interest in his students, and I am extremely fortunate to have him as an adviser.

I would also like to thank all the other members of the LAPIS group, especially Philip Rha,
Matthew Webber, and Tom Wilson. They were a constant source of support throughout this
process. I would also like to thank David Huynh and Vineet Sinah for their technical advice.

Finally, I am especially thankful of the constant support of my parents, Tom and Linda, and my
sister, Katie. Their patience and encouragement throughout this project has been spectacular.

Contents

Chapter 1 INtrOdUCHION....cccovueiesrericssancsssanesssanssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssassssnas 14
Chapter 2 Related WOrKciciviicivencnnsencnssancnssnscsssicssasssssasssssssesssssssssssessssssssssssssasssssasssssas 22
2.1 Access POINtS t0 the WED.......oocuiiiiiiiiiiicee ettt 22
2.1.1 Outside the BrOWSETccoouiiiiiiiiiiiieeiicct ettt 22
2.1.2 WIhiN @ PrOXY cueiiieiiieciieecie ettt et eae e e enaae e snnee s 23
2.1.3 INSide the BrOWSETcooviiiiiiiiiiieiie ettt 24

2.2 Automated NaVIZAtiONeeeruiiieiiieeeiieeeiieeeieeesieeesveeesbeeesaeeesaaeesareesaaeesseeesnseeennnes 24
2.3 Pattern LangUAZEcccueeeiiiiiiiiieiiieeeeeee ettt et 24
2.4 Modifying Page CONENL......cccuviieiiieeeiieeeiieeciieeeieeerree et e ereeeeaeeeeaeesaaeesnseeesnseeenanes 26
2.5 Development ENVITONMENTcccuiiiiiiiiiiiiiiieeieeeiece ettt et siee e 26
2.6 SUIMNIMATY ...ttt e e ettt e st e e e s beeeesaee e sbeeessseeessseeenssaesnsseesnseeennseeennses 27
Chapter 3 Language DeSiZcccuiicrreinnsencnssancssssicssaniessasssssasesssasesssssesssssessssssssasssssasssssasssssas 30
3.1 Pattern MatChingccoviiiiiieiieecee ettt et e e stre e e e e ssbaeesaaeeeenseeenns 30
3.1.1 Other PatteInsS.cccuveeiiiieiiiee ettt ettt st e st esbee e sbee e 31
3.1.2 Match as @ SEarch CONEXL.....ccuuieiieeeeiieeiiieerieeerree et e ereeeireeeareesaeeesseeesnneees 32

3.2 AULOIIATION ..eeiiiieiiiieeeite ettt ettt e ettt e et e e ettt esabbeesabbeesabeeesabaeesabeeesabeeeans 33
3.2.1 WED FOTIIIS ..ottt et e et e e eaeeesaneeesnseees 33
322 Navigation and Page Loading..........ccccceeeriiiiiiiiiiiiiiiieiceceeeeeeeee e 35

3.3 Page MOdIifICAtIONccuiiiiiiieciie ettt e esaae e et e e sereeesaseeeeaneeenes 36
3.3.1 Insertions and DElEtiONS.........cccuuiiiiiiiriiiiiiie ettt 36
3.3.2 Special Chunks: Link and BUuttoncccoeeiiiiiiieniiecieecceceeeeeee e 38
Chapter 4 APPlCALIONS ..cucicrreierrenicssanenssancsssanessssscssasssssasssssasssssasessssssssssssssssssssasssssasssssasssssas 41
4.1 Adding File Type Icons to LINKScccviiiiiiiiiiieeiieeiie et 41
4.2 SOTHNG TADIES ...eeiniiieiiiie ettt sttt e e 42
4.3 Concatenating a Sequence Of Pages........ccocviiriieeiiiieiiie e 43
4.4 Coloring Java Syntax and Linking to Documentation.............cceeveeerveennieennieeenneeennne 44
4.5 Highlighting Vocabulary Words..........cueeiiiieriieeiiieciie e 45
4.6 Integrating a Bookstore and a Libraryc.cccoeiiiiiiiiiniiiiiniiciieccceeeeeeeee e 46

Chapter 5 User Interface DeSiZNcccceeerrercnsnicssnecssanicssasesssssesssscsssssessssssssasssssasssssasssssas 49

5.1 Layout DECISIONS ..c..veeiiiiiiiiieiieeite ettt ettt e b e 49
5.2 Pan@l DESIZN c..eeeiiiiiieiiiieeitee ettt ettt e st 50
5.2.1 Editor Panel...........oooiiiiiii e 50
5.2.2 TOOIS PANCL....c..oiiiiiiiiiie et e 51

5.3 TIIZZET DIESIZN ..vieiiiieeiieeciee ettt et e et e ettt e e e e esaaeesntaeeensaeesnsaeessseeennseeenns 53
5.3.1 DefiNINg TIIZEETS ...uvvieiiiieiiieeeite ettt ettt ettt st e et eesbeeesasee s 53
5.3.2 TIIZEETS PANEevieeiieeeeeee ettt 54
Chapter 6 Keyword Pattern SUIVEYcccccveecsseicssnicssasisssascsssasessssscssssscssssssssasssssssssssasssssas 56
6.1 IMIEEIOM ...ttt sttt et ettt st e 56
0.2 RESUIES ..ottt e 57
Chapter 7 Keyword Pattern AlGOrithimcoueiccvveccisnicisenicssencsssnncssnscssssscssssssssssssssasssnns 61
7.1 FINding TeXt BIODS ...ccouuiiiiiiiiiiie ettt st 61
7.2 Determining Candidate TeXt BIODScccceviiiiiiiiiiiiiieieee e 63
7.3 Determining Candidate MatChes............cooiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 64
7.4 Evaluating Candidate MatChesccceeeiiieiiiieeiiieeiieeciee ettt s 65
7.5 EVAIUATION ..ottt sttt 67
Chapter 8 ImpPlementationc.ccceevereccrenesssancsssnncssnesssasssssssssssssesssssssssssssssssssssssssssssssssssssnes 76
8.1 Chickenfoot Model for a Web Page........cccceeeiiiiiiiiiiiiiiiiecieeceecteeeee e 76
8.1.1 IMIOTIVALION ...ttt ettt ettt e bt et e sb b st eesateeabeenaee 76
8.1.2 Building a Bridge between Firefox and LAPIS ... 77

8.2 How Chickenfoot Operates on this Model............cccvieriiiieniiiieniieeiieeeceeeee e 80
8.2.1 How the find() Command WOIKSccceeeeiiiiiiiiiiiieiee e 80
8.2.2 How the insert() and remove() Commands WorK...........cccoevvvvvviiiiiiiiiiiinneeenneeenn. 84

8.3 Updates to the MOdElccc.uiiiiiiiiiieie et 85
8.3.1 Updates to the DOMcooouiiiiiiieiie ettt e e svee e saaee s 85
8.3.2 Updates t0 RANGES.ccueiiiiiiiiiieiie ettt s 86

8.4 How Chickenfoot Scripts are Interpretedccooveeiieiiiiiiiiiiinieeeeeeeeeeee 90
8.5 Monitoring Page Loads.........coouiiiiiiiiiiiiiiiceeeteeeet e 91
8.5.1 Listening for Load EVeNnts........c..ccoiiiiiiiiiiiiieeeeee e 91
8.5.2 Waiting Until a Load is COMPIELEcccuveeriiiiriiiiiiiiiieeieeeeeeeeeeeee e 91
8.5.3 Using Page Loads for URL TTigEersc.coeueriiiiiiniienieiiienieeeeree e 92
Chapter 9 CoONCIUSION ...uuueicrreniessencsssancsssancssssnessssessasssssasssssasssssasessssssssssssssasssssasssssasssssasssssas 94
9.1 CONITIDULIONS. ...ttt ettt sttt sat e et e st e et e e saeeebeeeaee 94
0.2 FULUIE WOTK .ot sttt 95
9.2.1 Packaging SCIIPLS ..ccueiiiiiiieeieeite ettt ettt 95
9.2.2 BY DemMONSIIAIONceeiiiieiiieeiiieeiiee ettt ettt e st esabeeesanee s 96

9.23
924
9.25
9.2.6
9.2.7

Appendix A
Appendix B

USEE INEEITACEcoeeeiieeeeeee ettt e e e ettt e e e e e et eaaa s 97
RODUSIIIESS ..ot e e et e e e e e e e e e e eaeaeaeeeeeereaneaaaeas 98
Extensions to Pattern Language...........cccoeoveiiiiiiiiiiiniiieiieeiceetceeee e 98
Extensions to Command Languageccccceeveeniiriiinieiiienieeeeeeeee e 99
EVAIUALION ..ttt ettt e e e ettt e e e e ettt aaa e e e eeeeeaaaannanaes 100

ChickenSCratCh RefeIrEIICEe. ceveeeeeeeeeereereereeeeeeeeeeesessesssesesssssssssssssssssssssssssssses 102

Partitioning HTIML Tagsccccccervercssnicssanccssancsssascssascssssscssasssssssssssasssssasesss 103

List of Figures

Figure 1.1 Three models of a web page (WWw.Z00gIe.COM).....cccueiiriiiiniiiiniieiiieniieeeieeeeiee e 16
Figure 1.2 Filling out a form using Chickenscratch (www.gmail.com)cccceeveenierieeniennnen. 17
Figure 1.3 Chickenfoot as a sidebar in the Firefox web browsercccceevveeevieeeniiieniiennieene 18
Figure 1.4 Integrating Google Maps with a realty Site.cccceeviiriiriieniiiiiienieeeeeeeeeeeeen 19
Figure 3.1 Web form for requesting driving directions (Www.mapquest.COm)...........ceecuveerveennne 32
Figure 3.2 Google Preferences Page (www.google.com/preferences)ccceeevveerviveercuveenneenne 35
FIGUIE 4.1 TaTZELALRTL ...eeeeiieeniiieeiie ettt tee ettt e et e et e e st e e st e e s abeeesaeeenssaeensseesnsneennsneenns 42

Figure 4.2 Table sorting demo: First the script adds headers to the column and then the user can
click on a header to sort the column. Here, the user clicked on the header of the first
COUIMIML ¢ttt ettt et e bt st esat e et esae e ebeesate e bt e saeeeaneenaneens 43

Figure 4.3 A "Show All" link embedded after a series of sequential links. Note that this link has
the same style of the surrounding links, so it appears like a natural part of the page. Clicking
this link will cause the browser to start downloading the other links shown here and
concatenating their content to the current Web page.........cceevveeeriiieniiieniieeniieenieeeiee e 44

Figure 4.4 LAPIS Java-snippet parser used in Chickenfoot to hyperlink to Javadoc API and
syntax-highlight Java COMIMENTS.........cccovieeiiieiiiieeiieecieeeeieeertee et e et e e eeveeeareessaeesnreeenes 45

Figure 4.5 User viewing definition of prodigious as a tooltip after running Vocabuarly script.. 46

Figure 4.6 Book availability in MIT Library inserted among Amazon purchasing options......... 47
Figure 5.1 EditOr Panelcccooiiiiiiiiiieie ettt e eeae e e e e e senae e 50
FIigure 5.2 OULPUL PANE ...covviiiiiiieiiiecieeee ettt e e e tae e e tb e e eaaeessnaeesnneeenns 51
Figure 5.3 Patterns PAnec..oooiiiiiiiiiiiiiie ettt 52
FIigure 5.4 ACHONS PANE.......cooiiiiiiiiiiiiiiiiie ettt ettt st e s e e 52
FIGUIE 5.5 TTIZEOT PANC...ccuuvieeiiieeiieeeiieeeiteeeieeeetee ettt e etteeetaeesntaeessseeenssaeesseeessaeassessnsneesnseesns 54
Figure 6.1 Examples of textboxes used in the Web SUIVeYccccvveviiiiriiieeniieciee e 57

Figure 6.2 Most users selected the left box rather than the top one for "First Search" in Part 2
(02N 1) 1 1) ISP RP 59
Figure 7.1 Rendered model of web page with multiple textfields (www.google.com/advanced
SCATCH) uviviiiie et e e e e e e e e e e e e ee et baaaaeaee e e e e taaaraaaeeeeeeaanrraraes 62
Figure 7.2 DOM of the web page shown in Figure 7.2 (www.google.com/advanced _search)... 62
Figure 7.3 Map of text blob content to the partitioning element that contains it.............c.cccueeenn. 63
Figure 7.4 Comparing text blobs with textfields for matches. Bounding boxes of text blobs
appear in gray and textboxes appear in black. Some edges of the boxes are extended to
ShOW hOW the DOXES TINE UP. ..eeeiiiiiiiieiiie ettt et ae e e e e eaeeeenaeesnneeenes 65
Figure 7.5 Labels that are candidate matches for multiple textfieldsccccceevviieeriieniieencnenns 66
Figure 7.6 Screenshot of the Yahoo! home page with amiguous textfield match for "Search"
(YANOO.COML) 1.ttt ettt et e et e ettt e e bt e e e bt e e st e e sabbeesabbeesabeeesaseeas 67
Figure 7.7 Results of algorithm for resolving keyword patterns on Part 3 survey data 68
Figure 7.8 Yahoo! home page (www.yahoo.com) shown in Part 3 of the user study. Users' names
for the search box included: "Search," "Search the Web," "First Search," and "Seach [sic]
the WED TEXE BOX." ..eiiiiiieeie ettt ettt 69

Figure 7.9 Expedia home page (www.expedia.com) shown in Part 3 of the user study. Users'

nn nn

names for the return date field included: "return,” "return date,

TN/ YY" et ettt e et e st e st e e s bt e e st e et e e sabeeeeaae 70

trip return," and "Return

Figure 7.10 Amazon home page (www.amazon.com) shown in Part 3 of the user study. Users'
names for the search box included: "Search Amazon," "ProductSearch,”" "Searchl," and
"SRATCIL 2." L.ttt ettt et e s eaees 71

Figure 7.11 MIT emergency contact information page shown in Part 3 of the user study. Users'
names for the search box included: "MI2," "Notify Mi Two," "Emergency2Mi," "backup

nn

contact mi," "Mi," "above person not available Mi," "Name MI," and "Contact 2 Mi."...... 72

Figure 7.12 Vivisimo home page (www.vivisimo.com) shown in Part 3 of the user study. Users'
names for the search box included: "search," "web search," "Cluster," and "vivisimo
SEATCHL. " ..ttt st ettt e e e naee 73

Figure 7.13 Google advancd search page (www.google.com/advanced_search) shown in Part 3

of the user study. Users' names for the domain box included: "site," "Domain," "only from,"

10

"Advanced Search Domain," "domain/site," "GOOGLE," and "return results from the site or

QOIMATINL" L.ttt et e bt et e s h b e et esbbe et e esab e e bt e s beeebeesaneens 73
Figure 8.1 Creating the XHTML 1n FIrefoXccociiiiiiiiiiiiiiiicecceeeceece e 78
Figure 8.2 Recreating the DOM and generating the HTML in Javac.cccocceviiiiiniiiiicnennen. 79
Figure 8.3 Construction of Mapping between Firefox and LAPIS..........cccooooiiiiiieiiiieiieeeiee 80
Figure 8.4 Illustration of @ Range [32]....cccueieiiiiiiiiiiiie et e 81
Figure 8.5 Finding the node for the boundary-point for index 41cceceeviiniiiniiniiniecnieeee. 82
Figure 8.6 Implementation of fINdccooiiiiiiiiiiiiicecceeee e 84
Figure 8.7 DOM with Range content outlined with OValS..........ccceeviiiieriiiieniiieceeeeceeeee e 87
Figure 8.8 DOM with Range content outlined with ovals after inSertion............c.cceccveeeeveerennene 87
Figure 8.9 DOM with Range content outlined with ovalscc.ccocueriiiniiiiiininiineceeee, 88
Figure 8.10 with Range content outlined with ovals after inSertion...........ccccceecveeveenveeeneeniennnen. 89

11

List of Tables

Table 2-1 Comparison of features of existing web automation tools.ccceeerveeerveencieeninnenne 28
Table 3-1 The complete list of properties of the Chickenfoot Match object..........ccceeveuveernnnne 33
Table 7-1 Special conditions for each type of component matched by this algorithm................. 66

Table 8-1 Benchmarking data for overhead of method calls in different languages. These
benchmarks were made on a 1.7GHz laptop running WinXP, Firefox 1.0, and Java 1.5. ... 76

Table 8-2 Regions fOr DOM NOAES........ccccviiiiiiiiiieeiiieeiiee et eeeesieeesteeesaeeesereesnareesseeesseeens 82

Table 8-3 Rules for creating a Match from a Range...........ccocveeiiiiiiiiiiniiiiiiieccceeeeee 83

12

13

Chapter 1 Introduction

End-user programmers are users who are not formally trained in programming, yet need to
program in order to accomplish their daily tasks. Spreadsheets are often touted as the major
success story in end-user programming [1] -- millions of users successfully write formulas in
Microsoft Excel even though only a fraction of them consider themselves programmers, or even
realize that they are programming at all. But when we look to the web browser, which is the most
common tool for accessing information on the Web, we find that the existing tools for
automating and customizing interactions with the Web are insufficient for developers and end-
user programmers alike.

For example, consider a user who has compiled a list of homes that he is interested in through a
realty web site, but now he wants to see how far each home is from his workplace. He could visit
a site that provides driving directions, such as Google Maps, to plug in the addresses of each
house and his workplace to find the distance between them, but this will be tedious if the list of
houses is long. Ideally, this service would be provided by the realty web site -- it could provide
its own web form for this task as many commercial sites have done by providing a "Store
Locator" that finds the nearest Target or Wal-Mart to your home. However, as user queries get
more intricate (now the user wants to find the home closest to his workplace that has a Dunkin'
Donuts on the way there and a McDonald's on the way back), the likelihood that a web site can
support such a query diminishes. Thus, the user needs the ability to write his own scripts that will
automate his personal web tasks. To that end, the user needs a tool that simplifies the process of
web scripting, so that the development and execution of the script take less time than it would to
do the task manually.

Most existing tools for scripting web pages [13, 15] require the user to work with the raw HTML
of a page, as shown in Figure 1.1. In the string model, a web site is represented as a string of
HTML, and users identify parts of the page by matching character patterns in the text. Because
the HTML for most web sites is machine-generated rather than written by hand, it is often
incomprehensible to an end-user programmer who is trying to script it, so writing scripts in this
manner is time-consuming. Further, these scripts have a tenuous dependency on the current text
of a web site, which may break if the site changes.

14

Other tools allow the user to work with the Document Object Model (DOM) of a web site, in
which the page is represented as a tree of HTML elements, as shown in Figure 1.1. Although the
DOM is the standard model for documents on the Web [2], it is not an appropriate model for
end-user programmers because it still requires users to be familiar with the underlying HTML of
the page.

To address these shortcomings, my thesis presents Chickenfoot, an end-user programming
system for automating and customizing web applications through a familiar interface — as web
pages rendered in a web browser. Chickenfoot enables users to work with the rendered model of
a web page, as shown in Figure 1.1. The rendered model represents a page as a two-dimensional,
typeset document, which aims to be consistent with the user's mental model of the page when
viewing it through a web browser.

15

<html><head><meta http-equiv="content-type"
content="text/html;
charset=UTF-8"><title>Google</title><style><!--
body, td,a,p, -h{font-family:arial,sans-serif;}
.hi{font-size: 20px;}

.gq{color:#0000cc; }

[f==>

</style>

<script>

<l--

function sf () {document.f.q.focus();}

/===

</script>

</head><body bgcolor=#ffffff text=#000000
1link=#0000cc vlink=#551a8b alink=#ff0000 onLoad=sf ()
topmargin=3 marginheight=3><center><table border=0
cellspacing=0 cellpadding=0 width=100%><tr><td
align=right nowrap><font

“Google’

“<--body tc a p ..”

Google

Images Groups Mews Froogle Local™ ™ Desktop more »

| Advsnced Search

Web

Language Tools

Google Search][I'm Feeling Lucky]

Advertising Programs - Business Solutions - About Google

E2005 Google - Searching 8,058,044,651 web pages

String model

In the string model, a web page is
represented as a string of HTML
text.

Document Object Model (DOM)
In the Document Object Model, a
web page is represented as a
hierarchical tree of nodes. This tree
is constructed from the string model
using an HTML parser.

Rendered model

In the rendered model, a web page is
represented a two-dimensional,
typeset document. The browser
creates this view by rendering the
DOM.

Figure 1.1 Three models of a web page (www.google.com).

16

Instead of using substrings of HTML or nodes in a tree to identify elements in a page,
Chickenfoot identifies elements using keyword patterns. A keyword pattern is text that appears
in the rendered view of a web page that can be heuristically evaluated to identify a component of
the page. For example, in the rendered model of google.com shown in Figure 1.1, Google
Search is a keyword pattern that identifies the left button below the textbox. In this case, the
label of the button is the heuristic used to match the keyword pattern with the page component.

Chickenfoot uses keyword patterns in its programming language, Chickenscratch.
Chickenscratch is an extension of JavaScript [4] that includes commands that make sense for
operating on the rendered model of a web page. For example, the Chickenscratch command for
following a hyperlink or pressing a button is click (), so the code for submitting a search query
to Google is click ("Google Search").

Writing code that fills out web forms is a common goal for Chickenfoot users, so Chickenscratch
has commands to automate form entry: enter, check, uncheck, pick, and click. These
commands take keyword patterns to identify web form elements, such as textfields, checkboxes,
dropdown boxes, and buttons. An example of using Chickenscratch to fill out a web form is
shown in Figure 1.2.

Web Form Chickenscratch Code

Sign in to Gmail with your
Google Account

Username: |Michael enter ("username", "Michael")
| EEEEEREE
Password: enter ("password", "mypasswd")
Remember me on this " "
computer. check ("remember")

Sign in click("sign in")

Forgot wour password?

Figure 1.2 Filling out a form using Chickenscratch (www.gmail.com)

Chickenscratch also has commands named insert and remove that allow users to add and delete
content from a page, respectively. This is especially important for users who wish to amend
pages with their own content, or to integrate content from multiple web sites.

Users can access other sites by using Chickenscratch commands: go (ur1) will create a rendered
model of the ur1 by loading it in the browser, and fetch (url) will create the model without
displaying the page. Once the model has been created, Chickenscratch has a find command that
takes a pattern and returns any matches that it finds. The pattern may be a keyword pattern or a
text constraint, which is a pattern that can refer to the implicit structure of a page. An example of

17

a text constraint is image in first row in second table. Like keyword patterns, text
constraints can be created from the rendered model of a page alone.

To ensure that the rendered model will be available when developing Chickenscratch code,
Chickenfoot is implemented as a sidebar inside the popular Firefox web browser, as shown in
Error! Reference source not found.. From here, users can experiment with a web site by

writing and running Chickenscratch code.

& Google - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<J] ; l_| - @ = E}]\[http: /fwww.google. comf

Chickenfoot Script Editor

(%]
@ E @ ?:} File: sat-words.js %‘

gol 'http://www_bo
//htep: / fwww . £drl

fest.com/test/sat-words. html', tr
rary.merist.edu/011144 html

doc_asyne = false;

doc.load ("http://www.bolinfest.com/test/sat-words.xml

words = {}
elements = doc.getElementsByTagName ("word")
len = elements.length
for (var i = 0; i < len; i++) {

node = elements.item{i)

words [node.getittribute('word')]

= node.gethAttribute(|'def"’)

i

// using & full border prevents
// title attribute from being displayed on mousecver
style = 'background-color: $FFFECC; border—top: sol

var doe = document.implementation.createDocument ("7, | |

il

<l = [3]

Debug | Patterns | Actons | Triggers |

[1gnore all triggers 3 a {} ﬂ
| Mame Included Pages Enabled? |
| TargetAlert e Fl

SAT Tutor http:/fwww.nytimes, com™ 1]

Multipage http:/fwww.google. comjsearch® []

Hyperlink Java Types http:ff=sun.com™]

Done

Web

(=1
0 y

¥ @ G
GO O 8 [e
Images Groups MNews Froogle Local®™®™ Desktop more »
—
Google Search][I'm Feeling Lucky] Language Tools

Advertising Programs - Business Solutions - About Google

©2005 Google - Searching 2,068 044,651 web pages

Figure 1.3 Chickenfoot as a sidebar in the Firefox web browser

Returning to the prospective homeowner mentioned earlier, he could solve his problem by using
Chickenfoot to create a script that would get the driving distance from Google Maps and
automatically insert it after the address on the realty site:

18

First, he would use the
find command to Shawmut Ave at W_ Newton St. zoogle map vahoo map
extract a house's address
from a web site.

ves - cats are O - purrr

location = find('text just before "google map"')
(o navigate o Google. Directions
vi
Maps. There he would mass ave 02139 |2 Shawmut, Shawmut Ave atW. Newton S
use enter to fill in the End address
address data, and click
to submit the query to go ('http://maps.google.com/")
Google Maps. click('Directions’)
enter ('start address', '77 mass ave 02139'")

(1
enter ('end address', location + ' boston')
click ('search')

Next, h 1d th
ext, e wouid use the End address: Shawmut Ave & VW MNewton
find command to == St
extract the driving
distance from the Roxbury, MA 02118
directions page returned Distance: 1.6 mi (about 2 mins)
by Google Maps.
distance = find('text Jjust after distance')
Finally, he would use
insert to amend the Shawmmut Ave at W. Newton St. zoozle map vahoo map
realty site with the new . .
information. Distance: 1.5 mi (about 2 mins)

ves — cats are OF - purrr

insert ('point just after "yahoo map"', distance)

Figure 1.4 Integrating Google Maps with a realty site.

Once the user has written this script, he will want to run it automatically whenever he checks a
listing on the realty web site. Chickenfoot provides a trigger system that lets a user define a
collection of URLs that will trigger a user's script automatically when a URL in the collection is
loaded, causing the user's script to be run.

Note that the user is able to create this script without looking at any HTML,; all the interactions
that he needed to do with the above web pages could be done through the rendered model.

19

My thesis statement is: Chickenfoot allows users to customize and automate web pages
without viewing their HTML source. In defending this claim, my thesis makes the following
contributions:

¢ Chickenfoot, an end-user programming system for web automation that provides users
with access to the rendered model of a web page, which abstracts the underlying HTML
from the user.

¢ Chickenscratch, a language for operating on the rendered model.

* The concept of keyword patterns, including a web survey justifying their usability as
well as an algorithm for matching them with web page components.

¢ A development environment for developing JavaScript code as well as extensions to
the Firefox web browser.

* A trigger system that can execute Chickenscratch code whenever a user visits a web site
so that the user's customizations automatically become part of the page.

¢ Improvements to the W3C DOM specification for updating Ranges in the DOM after
mutation.

The rest of this dissertation explains the details of the Chickenfoot system. A survey of related
work in other Web automation systems is presented in Chapter 2. The design of Chickenscratch
is explained in Chapter 3. Examples of applications that have been built using Chickenfoot are
provided in Chapter 4. The design of the development environment, including the trigger system,
is explained in Chapter 5. A web survey that motivated the design of keyword patterns is
discussed in Chapter 6, and the algorithm used to identify keyword patterns is presented in
Chapter 7. The implementation of the Chickenfoot system is covered in Chapter 8. Finally,
future extensions to Chickenfoot as well as its contributions are discussed in Chapter 9.

20

21

Chapter 2 Related Work

Several systems have addressed specific tasks in web automation and customization, including
adding links [4], building custom portals [5], crawling web sites [6], and making multiple
alternative queries [7]. Chickenfoot is a more general toolkit for web automation and
customization that can address these tasks and others as well. Here I survey some of the major
features of existing toolkits and compare how they are supported in Chickenfoot. The survey
includes:

programming languages, WebL [8] and Perl [9] (with Mech [10]),
macro recorders, WebVCR [11] and LiveAgent [12],

proxy-based tools, WBI [13] and Screen-Scraper [14],

browser extensions, Greasemonkey [15] and Chickenfoot [16],
and an experimental web browser, LAPIS [17].

A summary of the results of this survey is presented in a table at the end of this section.

2.1 Access Points to the Web

When doing a task on the Web, the first step is to access a web page. Though web pages are
always accessed by sending a request to a server, the point of access can be significant in
determining the page that is returned. The three types of access points that are seen in web
automation toolkits are: outside the browser (usually from the command-line), within a proxy,
and inside the browser.

2.1.1 Outside the Browser

Most modern scripting languages, Perl, Python, Ruby, etc., have a method for taking a URL,
connecting to it, and downloading its content. In these languages, every connection to the Web is
an independent request with no sense of state. The main benefit of this method is that programs
can be run from the command-line, which is helpful in automating access to the Web.

Unfortunately, a URL accessed in this way often returns different content than it does when

accessed through a browser. Web browsers support cookies, session variables, and client-side
scripting, all of which affect the way web pages are displayed. Because these scripting languages

22

do not support these advanced features, the content that they download may not be consistent
with the content that the user is accustomed to viewing in his web browser. For example,
accessing the home page for an e-commerce site that uses cookies to display personalized
information will have different content when accessed through a web browser than it does when
downloaded by a Perl script run on the command-line.

Also, although most pages can be accessed directly by their URL, some pages are dynamically
generated only after a series of navigations, and other pages require a secure connection to be
established before the URL can be accessed. These "hard-to-reach" pages [11] cannot be
accessed by the independent requests made by scripting languages because they lack the sense of
state required to reach them. Because not every URL can be accessed from outside the browser,
and even the pages that can be accessed outside the browser may not be consistent with what
users expect, accessing pages in this way is insufficient for a web automation system. In addition
to the scripting languages listed above, even WebL [8], a programming language designed for
the Web, suffers from this problem.

2.1.2 Within a Proxy

The next-best solution is to use a proxy that sits between the user's web browser and the Internet.
When a user requests a page from his browser, the proxy may intercept the request, or the
server's response, and moditfy it before it returns to the browser. This is a good approach, in that
the activity of the proxy is hidden from the end-user and is therefore seamlessly integrated into
the user's web experience. Another benefit is that the effects of a proxy can be seen through any
browser on the user's desktop, so toolkits that use proxies do not force the user to use a particular
browser.

However, there are two major limitations of using a proxy in a web automation toolkit. The first
is that a proxy cannot read pages that have been encrypted by the browser, and the second is that
the proxy cannot have any effect on a page after it returns it to the browser.

When a client accesses a site over a secure connection, every transaction with the site is
encrypted. Because the proxy will only see the page after it has been encrypted by the browser,
any toolkit that accesses pages through a proxy will not be able to manipulate such a page.
Because security is becoming a greater concern on the Web, the number of sites that use
encryption is likely to increase, so this limitation of proxy-based toolkits is significant.

Another growing trend is the heavy use of client-side JavaScript in web pages. Because there is
in an inherent latency in accessing information over the Web, some sites embed complex
JavaScript in their pages that can run in the client's web browser, after the page has been loaded.
Responding to user input with this client-side JavaScript is much faster than responding with a
subsequent request to the server, so this technique yields web applications whose performance
rivals that of desktop applications. Because this activity happens in the web browser after the
page has been loaded, a proxy has no knowledge of these events, so proxy-based toolkits cannot
respond to this activity.

All proxy-based toolkits are affected by these proxy problems, including WBI [13], LiveAgent
[12], and Screen-Scraper [14].

23

2.1.3 Inside the Browser

The third point of access, which is the one that Chickenfoot uses, is from inside the browser
itself. By embedding a web automation tool inside the browser, the tool is guaranteed to be able
to access the page as the user sees it, incorporating the effects of stylesheets, session identifiers,
etc. Unlike a proxy-based toolkit, it can react to changes in the page that are caused by client-
side scripting. It also overcomes the proxy's restriction to insecure pages by letting the browser
decrypt encrypted pages before acting upon them. Both Chickenfoot and Greasemonkey [15] are
extensions to the Firefox web browser that take this approach.

2.2 Automated Navigation

To access pages that are generated dynamically or that require a login, the user must fill out and
submit Web forms, so to provide programmatic access to any page on the Web, it is necessary to
automate entering form data on the Web as well.

Perl provides support for automating form interaction through its www: : Mechanize module,
often referred to as Mech [10]. Mech allows the user to write Perl code to automate a form in a
web page by supplying the names and values of the inputs the user wants to enter. From there,
Mech can submit the form data and return the result to the user. The user is restricted to using the
same names for input elements as the web site does. This is often undesirable for end-user
programmers because such names are often unintuitive to end users; for example, the name of
the search box on Google is g.

Some toolkits give the user the ability to record macros where the user records the actions taken
to require access to a particular page, such as filling out forms and clicking on links. Later, the
user can play the macro back to automate access to the same page. LiveAgent [12] takes this
approach, recording macros with a proxy that sits between the user’s browser and the Web. The
proxy augments pages with hidden frames and event handlers to capture the user’s input, and
uses this information to play back the recording later. Unfortunately, because LiveAgent uses a
proxy, it suffers from proxy problems and therefore cannot automate pages that are accessed
over a secure connection.

WebVCR [11] is another macro recorder for web navigation that skirts the proxy problems by
using a signed Java applet to detect page loads and LiveConnect [18] to instrument the page with
event-capturing JavaScript after the page loads. Because WebVCR runs as an applet inside the
browser instead of sitting behind a proxy, it can record all types of navigation.

2.3 Pattern Language

Once a web automation toolkit has acquired input, its next step is usually to extract content from
the page, often referred to as screen-scraping. To do this, the toolkit needs to have a rich pattern
language to describe the content to extract.

Probably the most primitive tool for extracting material from an HTML document is regular
expressions [20]. Though regular expressions (regexps) are a powerful technique for matching
patterns in ordinary text documents, using them for processing HTML is often undesirable
because by default regexps have a greedy “leftmost longest match” rule that consumes nested
HTML elements, returning one large match instead of the individual matches contained within it

24

[8]. Further, though precise, regular expressions are often cryptic. For example, suppose a
programmer comes across the following regular expression in a script:

“"(([A-Za—-z0-9]+_+

)| ([A-Z2a-z0-9]+\—+) | ([A-Za—z0-9]1+\.+) | ([A-Za—-z0-9]+\++)) * [A-
Za-z0-91+@Q ((\w+\—+) |

(\w+\.)) *\w{l,63}\.[a-2A-Z]{2,6}$

What is this regex supposed to match? Is the regex correct? It is hard to answer these questions
without studying it in detail. This regex is intended to match an email address; however, its
author admits that it fails to match email addresses that use IP numbers in the host portion [20].
Thus, despite the power and precision of regular expressions, it is still difficult to get them right.
If this is the case for mature software developers, then what hope do end-user programmers
have?

More importantly, regexps require the user to become intimately familiar with the HTML of the
page from which they wish to abstract information. This forces the client to use the string model
of an HTML document rather than the more expressive DOM that is inherent within it.

The commercial Screen-Scraper tool [14] builds on regular expressions by providing a pattern
type called an extractor pattern. An extractor pattern is "a block of text (usually HTML) with
special tokens inserted where data is to be pulled." [21] In Screen-Scraper, an extractor pattern
may look like this:

<p>This is the ~@EXTRACTED_TEXT@~ I'm interested in.</p>

where EXTRACTED_TEXT is a variable that can be used later in the program. In practice, this is no
more powerful than using capturing parentheses in regular expressions; however, this may be
more readable for a novice programmer.

A popular, more powerful pattern language for HTML and XML documents is XPath [22].
Unlike pure regular expressions, XPath allows users to match nested nodes within a parent node.
Also, the syntax of an XPath expression closely resembles the form of the matches to the
expression, making it easier for other programmers to understand what the expression is trying to
match. For example, /doc/chapter[5]/section[2] selects the second section of the fifth
chapter of the doc.However, this syntax has the same drawback that regular expression syntax
does, in that writing an XPath expression requires the user to become intimately familiar with the
HTML of the page. Even so, the fact that the majority of the sample scripts on the
Greasemonkey site use XPath expressions [23] is a testament that many script authors are willing
to plumb through a site's HTML in order to automate it. Also, as XPath is a W3C standard, Perl,
Java, and JavaScript all have libraries that support XPath queries, so XPath expressions may be
reused in other programming languages.

WebL [8] is a programming language for the Web that focuses on giving users a higher-level
language to describe web page elements. In WebL, the user provides names of HTML elements
to create piece-sets, where a piece-set is a set of piece objects, and a piece is a contiguous text
region in a document. WebL provides various methods to combine piece-sets called operators,
including set operators such as union and intersection, positional operators such as before and
after, and hierarchical operators such as in and contain. Although these operators help produce

25

more readable scripts, the language does not eliminate the need to inspect a web page for the
names of its HTML elements, as the user must provide those to construct the basic pieces on
which the operators work. In this way, WebL provides a pattern language that is similar to
XPath, but is more expressive because of the hierarchical operators that it provides.

LAPIS [17] has a pattern language that is a cut above that of the previous toolkits called text
constraints. As mentioned in Chapter 1, text constraints is a pattern language that can refer to the
implicit structure of page. The text constraint image in first row in second tableis
devoid of HTML and regexp syntax, so it is much more appropriate for an end-user programmer.
It is also possible for an end-user programmer to create this pattern from the rendered model of a
web page, rather than the string model. Finally, this pattern is more likely to succeed even if the
web site's HTML changes because it is based on lightweight structure rather than an overfitting
regexp pattern.

Unlike any of the previous toolkits, LAPIS also makes it possible to create new patterns by
demonstration. To create a pattern by demonstration in LAPIS, a user can highlight a portion of a
document using the mouse, and LAPIS will offer various text constraints that match the pattern.
This is especially helpful to users who have trouble formulating text constraints.

Indeed, LAPIS text constraint patterns are more accessible to end-user programmers than other
pattern libraries are, so Chickenfoot includes the LAPIS pattern library as part of its
implementation. However, Chickenfoot also builds upon this library by supporting keyword
patterns, which are patterns that use the spatial location of text in the rendered web page to find
matches. Keyword patterns are discussed in more detail in section 3.1. Though Chickenfoot
provides high-level patterns such as keywords and text constraints, it also supports XPath and
regular expressions, which users may already be familiar with.

2.4 Modifying Page Content

Of the toolkits described thus far, only WBI, Greasemonkey, and Chickenfoot empower the user
to write scripts that change the appearance of a web page in the user's browser. WBI uses a proxy
to intercept page requests, letting user-authored Java code mutate either the request or the
resulting page before it appears in the user's browser, and Greasemonkey and Chickenfoot can
run JavaScript code on a page just after it is loaded in Firefox. Each toolkit lets users manipulate
pages with a high-level programming language that ultimately enables the user to seamlessly
alter his web browsing experience (though WBI cannot mutate encrypted pages because of its
proxy problems).

In addition to manually running scripts, users of all three of these toolkits can write code that will
allow their scripts to be triggered automatically upon loading particular web pages. Users can
specify whether their script should run on all pages that are loaded in the browser, or only on
pages whose URL matches a special pattern. Additionally, both WBI and LiveAgent allow users
to schedule scripts or agents to be triggered by time of day rather than by URL.

2.5 Development Environment

One major drawback of most of the aforementioned tools (with the exception of the macro
recorders), is that they do not allow scripts to be developed inside the web browser. We consider

26

the ability to experiment with a web site from the script development environment one of the
greatest advantages of Chickenfoot — the user does not have to wait to see how it will affect the
appearance of the web page because Chickenfoot gives immediate feedback on the rendered
page. LAPIS, a predecessor of Chickenfoot, took a similar approach, giving the user an
interactive environment in which to experiment with pattern matching and web automation.
Unfortunately, the LAPIS web browser does not support web standards like JavaScript, cookies,
and secure connections, so it fails to provide the user with a complete web experience.

2.6 Summary

Table 2-1 is a summary of the various web automation toolkits discussed in this section.

27

Development

Language

Features

Chickenfoot (2005)

Greasemonkey (2005)

Perl with Mech (2003)

Screen-Scraper (2002)

WebL (1998)

WBI (1997)

Can develop scripts
by experimenting
with web page

i

| LAPIS (2002)

| WebVCR (2000)

| LiveAgent (1997)

Can develop scripts
by demonstration

b

Can develop scripts
offline in text editor

>

Supports keyword
patterns

Supports text
constraints in pattern
language

Supports regular
expressions

Supports XPath-
style expressions

Language usually
used

Java-
Script

Java-
Script

Perl

Tcl

N/A

N/A

WebL

Java

N/A

Scripts can run on
secure pages

Cookies can be used
when accessing a

page

Uses a proxy

Scripts can be
triggered
automatically when
a page loads

Scripts can be
triggered by time of
day

Can learn patterns
by demonstration

X

Table 2-1 Comparison of features of existing web automation tools.

28

29

Chapter 3 Language Design

Rather than creating an entire language from scratch, I designed Chickenscratch as an extension
of the JavaScript programming language [3]. In addition to the technical benefit of being able to
take advantage of the existing JavaScript interpreter built into a web browser, this design
decision also facilitates the adoption of Chickenscratch by those with web design experience. To
that end, Chickenscratch provides a number of JavaScript objects and functions that are familiar
to JavaScript web programmers. These are listed in Appendix A.

However, most Chickenfoot users are focused on facilitating the manipulation of web content,
which means that users need to be able to programmatically describe elements in the page on a
high level. Pure JavaScript provides an interface to a page's DOM, but this is too low-level for
end-user programmers. To bridge this gap, Chickenscratch extends JavaScript by adding a
pattern matching system for identifying elements in the rendered model. It also provides
commands to cut and paste these elements, as well as commands to automate user input to the
browser.

3.1 Pattern Matching

Pattern matching is a fundamental operation in Chickenscratch. To operate on a web page
component, most commands take a pattern describing that page component.

Chickenscratch supports two kinds of patterns: keyword patterns and text constraint patterns. A
keyword pattern consists of a string of keywords that are searched in the page to locate a page
component, followed by the type of the component to be found. For example, "search form"
matches a form containing the keyword Search, and "Go button" matches a button with the
word Go in its label. The component type is one of a small set of primitive names, including
link, button, textbox, checkbox, radiobutton, 1istbox, and table. When a keyword
pattern is used by a form manipulation command, the type of page component is implicit and can
be omitted. For example, click ("Go") searches for a hyperlink or button with the keyword
"Go" in its label. Case is not significant, so click ("go") has the same effect.

A text constraint pattern combines a library of primitive patterns (such as 1ink, textbox, Or
paragraph), literal strings (such as Go), and relational operators (e.g., in, contains, just

30

before, just after, starts, ends). Text constraint patterns are generally used to identify parts
of a page for modification and extraction, although they can also be used for form manipulation.

The find command takes a pattern of either kind and searches for it in the current page, e.g.:

find("Search form")
find("link in bold")

find returns a Match object which represents the first match to the pattern and provides access to
the rest of the matches. Here are some common idioms using find:

// test whether a pattern matches
if (find(pattern) .hasMatch) { ... }

// count number of matches
find (pattern) .count

// iterate through all matches
for (m = find(pattern); m.hasMatch; m = m.next) {
// use m

A Match object represents a contiguous region of a web page, so it also provides properties for
extracting that region. For example, if m is a Mat ch object, then m.htm1l returns the source HTML
of the region and m. text returns the text of the region without the HTML tags. The complete list
of properties for Match is listed in Table 3-1.

3.1.1 Other Patterns

find actually accepts a number of types, the union of which is called a Pattern in
Chickenscratch. There are a number of other Chickenscratch commands, such as insert and
click, that also accept a Pattern as an argument. Each of the following qualifies as a Pattern:

¢ Text constraint (TC). A string whose content is a valid LAPIS pattern. Examples of TCs
are second row in first table and 3rd Word in Sentence. See the LAPIS
documentation [17] for a complete description of text constraints.

e Keywords. A string of keywords that appear in the web page. If a string pattern parses
successfully as a TC pattern, then it is interpreted as a TC pattern; otherwise, it is
interpreted as a keyword pattern.

e Match. Match object returned by an earlier call to £ind (). When supplied as an
argument to find () it will simply return itself; however, it may be useful as an argument
to other commands that accept a Pattern, such as replace ().

® Node. A Node in the Document Object Model (DOM) representation of the web page. As
Nodes are abstracted by Chickenfoot's rendered model of a page, they are not commonly
used by Chickenscratch script authors to define a pattern; however, using a Node as a
Pattern is supported.

¢ Range. A Range in the DOM. Like Node, it reflects the underlying structure of the page,
SO its use as a pPattern is not favored, but it is supported.

31

3.1.2 Match as a Search Context

The find command is not only a global procedure, but also a method of Match. In this way,
pattern matching in Chickenscratch can be constrained to a region of a document by finding a
Match for the desired region and then using its £ind method to restrict the search to the part of
the page delimited by the Match. This technique could be used to locate rows within a particular
table:

table = find("third table after first heading")
for (row = table.find("row"); row.hasMatch; row = row.next) {
// use row

A Match can be used as a context for a variety of Chickenscratch commands that take patterns,
including the web form commands seen in the examples in Chapter 1. For example, consider a
page with multiple fields with the same label:

EZ2) starting Address E2) Ending Address
Your Saved and Recent Searches [» Your Saved and Recent Searches h
(Save Home or Work) {Save Home or Work)
Address or Intersection (optional) Address or Intersection (optional)
City State ZIP Code City State ZIP Code
Options Get Directions
s LIS, & Canada
* Europe

Figure 3.1 Web form for requesting driving directions (www.mapquest.com)

In this case, the command enter ("state", "ca") would be ambiguous because there are two
boxes labeled State. This problem can be solved by first matching the appropriate section of a
page, and then using it as a context for for subsequent commands:

// starting address is context for enter
start = find("starting address table")
start.enter ("address", "32 vassar st")
start.enter ("zip", 02139")

// ending address is context for enter

end = find("ending address table")

end.enter ("address", "1600 amphitheatre parkway")
end.enter ("zip", "94043")

// no special context needed because label is unambiguous
click ("get directions")

32

Contexts can help users focus on matching patterns in a particular part of a page.

range the DOM Range whose content matched the pattern used to create this
object

next (possibly null) reference to the next Match in the linked list of matches to the
Pattern

hasMatch | poolean indicating whether this is the empty Mat ch

count number of remaining matches in this linked list of matches (including this
Match)

index 0-based index of Match within the linked list of matches (undefined for the
empty Match)

content | 3 DocumentFragment cloned from range

element | if the content of the Match contains exactly a single Element node, then
element is non-null reference to that Element

document | the document that was searched to create this Match

html the HTML content of range

text the text of htm1 that is visible in the rendered web page

Table 3-1 The complete list of properties of the Chickenfoot Match object

3.2 Automation

To be a total web automation system, the user must be able to programmatically fill out web
forms and access web pages. This section describes how Chickenscratch is designed to support
these operations.

3.2.1 Web Forms

Chickenscratch has a number of commands to automate interactions with a web site. Each
command listed in this section can take a Pattern to identify the element to be automated.

The c1ick command takes a pattern describing a hyperlink or button on the current page and
causes the same effect as if the user had clicked on it. For example, these commands click on
various parts of the Google home page:

click ("Advanced Search") // a hyperlink
click("I'm Feeling Lucky") // a button

Keyword patterns do not need to match the label of the button or hyperlink exactly, but they do
need to be unambiguous. Thus, click ("Lucky") would suffice to match the I'm Feeling Lucky
button, but in this case, click ("Search") would be ambiguous between the Google Search
button and the Advanced Search link, and hence would throw an exception. (Exact matches take
precedence over partial matches, however, so if there were a single button labeled “Search,” then
the c1ick command would succeed.) Buttons and links labeled by an image can be matched by
keywords mentioned in their ALT text, if any. The keyword matching algorithm is described in
more detail in Chapter 7.

33

The enter command enters a value into a textbox. Like c1ick, it takes a keyword pattern to
identify the textbox, but in this case, the keywords are taken from the textbox’s caption or other
visible labels near the textbox. Here is a script that logs into Gmail:

enter ("username", "Michael")
enter ("password", "mypasswd")

because Username and Password were the visible labels to the left of the appropriate text boxes.

When the page contains only one textbox in the page, which is often true for search forms, the
keyword pattern can be omitted. For example, this sequence does a search on Google:

enter ("how many bathrooms are there in the white house")
click ("Google Search")

Checkboxes and radio buttons are controlled by the check and uncheck commands, which take a
keyword pattern that describes the checkbox:

check (“Yes, I have a password”)
uncheck (Y"Remember Me”)

Finally, the pick command makes a selection from a listbox or drop-down box (which are both
instantiations of the HTML <select> element). The simplest form of pick merely identifies the
choice by a keyword pattern:

pick (“California”)

If only one choice in any listbox or drop-down on the page matches the keywords (the common
case), then that choice is made. If the choice is not unique, then pick can take two keyword
patterns, the first identifying a listbox or dropdown by keywords from its caption, and the second
identifying the choice within the listbox:

pick (“State”, “California”)

All of these commands can be used either as a global procedure or in a context, as they are all
methods of Match. The following script is an example that exhibits all of the commands in this
section to automate the Google preferences page shown in Figure 1.1:

go ('www.google.com')

click ('preferences')

uncheck ('search for pages in any language')
check ('english')

pick ('results per page', '20")

click ('save preferences')

34

Global Preferences (changes apply to all Google senices)

Interface Language Display Google tips and messages in: | English [»

If vou do not find your native language in the pulldown above, you can
help Google create it through our Google in Your Language program.

Search Language & Search for pages written in any language (Recommended)

O Search only for pages written in these language(s):

[Arabic O English [Indanesian] Romanian
] Bulgarian [Estonian [ttalian [Russian
O] catalan [Finnish [Japanese [Serbian
(] Chinese (Simplified)] French [Korean] Slovak
[Chinese (Traditional) [German [Latvian O Slovenian
] Croatian O Greek [Lithuanian [Spanish
[Czech] Hebrew [Morwegian] Swedish
[Danish [Hungarian [Palish [Turkish
[Dutch [Icelandic [Portuguese
SafeSearch Filtering Google's SafeSearch blocks web pages containing explicit sexual content from appearing in search results.

O Use strict filtering (Filter both explicit text and explicit images)
® Use moderate filtering (Filter explicit images only - default behavior)
© Do not filter my search results.

Number of Results Google's default (10 results) provides the fastest results.
Display | 10 |»| results per page.

Results Window] Open search results in a new browser window.

Save your preferences when finished and return to search. [Save Preferences

Figure 3.2 Google Preferences Page (www.google.com/preferences)

3.2.2 Navigation and Page Loading

Chickenscratch provides a go command to navigate to a URL in the current window:

go(String url [, Boolean force_reload])

The second argument to go is an optional reload flag; if true, it indicates that the browser should
navigate to the URL even if it is already the current URL being displayed in the browser
(effectively forcing a refresh). The reload flag is false by default.

If the url input to go is not recognized as a well-formed URL, then http:// is prepended to the
url before it attempts to navigate to the new page, so either of these commands can be used to
load the Google home page in the browser:

go ('http://www.google.com/")
go ('www.google.com')

35

It is also possible to load a page without displaying it in the browser by using the fetch
command:

fetch(String url) // returns an object that delegates calls
// to the page's DOM, once it has been loaded

Pages accessed by go and fetch are loaded asynchronously, which means that calls to go and
fetch will return right away; however, any methods invoked on a page before it finishes loading
will cause Chickenfoot to hang until the page is loaded.

To avoid locking up Chickenfoot, Chickenscratch has a ready command that can test if a page is
loaded without invoking one of its methods. ready can take one page, or an array of pages, and it
will return the first one that is finished loading, or nu11 if all of the pages are still downloading:

ivy = fetch('fas.harvard.edu') // load the a page in the background

sleep(10) // wait for 10 seconds
if (! (doc = ready(ivy)) {
alert ('this site is too slow!') // complain if it is slow to load

}

Other times, the user will want to start downloading a number of pages and process them as they
come in. In this case, the user will want to be notified whenever a page is finished downloading.

For this, Chickenscratch has a wait command that takes a page, or an array of pages, and returns
the first page that finishes loading, removing it from the array (if it exists):

urls = [urll, url2, url3, ..., urlN]
for (var 1 = 0; 1 < urls.length; i++) urls[i] = fetch(urls[i])
while (doc = wait (urls)) {

// process doc

}

Chickenscratch also supports the following commands that allow programmatic access to the
browser buttons of same name:

back ()
forward()
reload()

3.3 Page Modification

End-users must to be able to insert and remove content in order to to customize a web site. This
includes moving content within the page, taking content from other pages, or creating fresh
content. Chickenscratch users can do all of this in the context of the rendered model.

3.3.1 Insertions and Deletions

Chickenfoot offers three primitive commands for changing the content of web pages: insert,
remove,andreplace.

36

The insert command takes two arguments: a location on a page and a fragment of web page
content that should be inserted at that location. In its simplest form, the location is a text
constraint pattern, and the web page content is simply a string of HTML:

insert ("just before textbox", "Search: ")

The location can also be derived from a Match object, but it must represent a single point in the
page, not a range of content. The before and after commands can be used to reduce one of
these objects to a point:

t = find("textbox")
insert (after (t), "Search: ")

The page content to be inserted can also be a Mat ch object, allowing content to be extracted from
another page and inserted in this one:

map = googlemaps.find("image")
insert ("just after Directions", map)

The remove command removes page content identified by its argument, which can be a text
constraint pattern or Match object. For example:

remove ("Sponsored Links cell")

The replace command replaces one chunk of page content with another. It is often used to wrap
page content around an existing element:

discount = find("10% off")
replace (discount, "***" 4+ discount + "***")

The exact definitions for these functions are as follows:

insert (Position position, Chunk chunk) // returns a Match
remove (Pattern pattern) // returns a Position
replace (Pattern, Chunk chunk) // returns a Match

Like pattern, a Chunk is a union of types rather than its own type. Each of the following
qualifies as a chunk in Chickenfoot:

e String. The text of the string will be interpreted as HTML if there is HTML markup
present; otherwise, it will be interpreted as plaintext.

Match. Same as in section 3.1.1.

Node. Same as in section 3.1.1.

Range. Same as in section 3.1.1.

Link or Button. These are special chunks that are defined in the next section.

A Position is a Pattern that identifies a single point in the web page. Not every pattern
identifies a single point in a web page; on the contrary, a Pat tern often refers to a nonempty

37

region of a web page rather than an individual point. However, before and after can always be
used to produce a Position from a Pattern:

before (Pattern pattern) // returns a Position at the start of the pattern
after (Pattern pattern) // returns a Position at the end of the pattern

If the Pattern passed to insert iS not a Position, then insert will throw an Error.

The Match returned by insert is a reference to the content that was actually inserted into the
page that the client can use it as a point of reference for future insertions or deletions. Similarly,
remove returns a position where the deletion took place so the user can have a reference to it if
he did not have one already.

The API for insert and remove make it trivial to implement replace:

replace (pattern, chunk) ::= insert (remove (pattern), chunk)
Nevertheless, replace is included as part of Chickenscratch to improve the readability of scripts.

Finally, although de1lete would be a better name for the command that serves as the complement
of insert, delete is a JavaScript keyword, so it would not be possible to define it as a function
in Chickenscratch.

3.3.2 Special Chunks: Link and Button

When a Chickenscratch script needs to present a user interface, it can create links and buttons
and insert them directly into a web page. Input buttons are created by the Button constructor,
which takes a label for the button and an Action to execute when it is clicked:

showAll = function() { ... }
button = new Button ("Show All", showAll)
insert (position, button)

An Action is either a JavaScript Function to be executed with no arguments, or a string whose
content is a valid Chickenscratch script to be evaluated. It is important to realize that this is not
the same as doing this:

insert (position, '<input onclick="showAll" value="Show All">")

The difference is that the JavaScript code launched by the onc1ick attribute will be run in the
browser's security model, which does not have full access to the browser, the user's filesystem, or
the network. By contrast, an Action passed to the Button constructor will be run at a privileged
level, giving the script a level of access comparable to that of any desktop application.

There is a Link constructor that is analogous to Button that takes a chunk of HTML to display
inside the hyperlink:

surprise = function() { ... }

38

new Link ("What do I do?", surprise)
insert (position, surprise)

and there is also an onc1ick function to associate an Action with any pattern on the page:

onClick ("table", "alert('you clicked on the table!'")")

39

40

Chapter 4 Applications

This chapter describes a few of the applications that have been built using Chickenfoot.

4.1 Adding File Type Icons to Links

When a hyperlink points at a resource other than a web page (such as a PDF document, a ZIP
archive, or a Word document), it is often helpful for the link to be visually distinguished — first,
because the user may be actively scanning the page for one of these resources, and second,
because they may want to avoid them while casually surfing. Only a few web sites provide a
visual cue to the file type of a hyperlink. TargetAlert is a Firefox browser extension that I
developed that adds file type icons to hyperlinks on any web site.

TargetAlert was originally written in 217 lines of Javascript and XUL. I rewrote it in 29 lines of
Chickenfoot. The essence of the script is the following loop:

for (link = find('link'); link.hasMatch; link = link.next) {
href = link.element.getAttribute ('href')
if (m = href.match(/\. (\w+)S$/)) {

extension = m[1l]
src = 'moz—-icon://.' + extension + '?size=16"';
insert (after (1ink), ' ')

}
}

The script works by finding every hyperlink in the page and inspecting the URL of its
destination. It uses a simple regular expression to extract the file extension, indicating the type of
file that the URL points to. In creating the file type icon, the script exploits a feature of Firefox
that works only on Windows: URLs of the form moz-icon://.ext?size=16 return the icon
associated with file extension .ext in the Windows registry. (Firefox normally uses these URLs
to display local directories in the browser.) Using the moz-icon protocol, it is simple to get the
icon for each file type, so the script uses this trick to insert an image that displays the appropriate
icon after each link. The result of amending these links with images is shown in Figure 4.1.

41

test.pdf test.pdf
test.rss test.rss
test.doc test.doc 2]
test.xls test.xls El
test.ppt [54]
test.zip test.p-pt |
test.zip

Figure 4.1 TargetAlert

4.2 Sorting Tables

Another feature that some web sites have, but many lack, is the ability to sort a table of data by
clicking one of its column headers. A Chickenfoot script can add this functionality automatically
to most tables by replacing every table header cell it finds with a link that sorts the table by that
column.

Most of the script is concerned with managing the sort, but here is the part that replaces headers
with links:

for (var table = find('table'); table.hasMatch; table = table.next) {
var heading = table.find('first row')
for (var h = heading.find('text in cell'); h.hasMatch; h = h.next) {
var sorter = makeRowSorter (table.index, h.index)

replace (h, new Link(h.text, sorter))

}

The makerRowSorter function returns a function that sorts the specified table by the specified
column number. It does this by copying every cell in the column to be sorted into a temporary
array, and then uses JavaScript's built-in quicksort function to sort the array. Because the order of
the cells in the temporary array reflects the order that the rows should have when sorted, it uses a
map from the sorted cells to their rows to create a new array that contains the rows in sorted
order. The last step is to iterate over this sorted array of rows and replace the ith row in the table
with the ith element of the array. The results of this script can be seen in Figure 4.2.

42

| Name |Stams | Name |Status | Name |Status
Michael [MEng Michael |MEng Chong Meng [PhD

Rob Faculty Rob Faculty Matthew |Senior
Min PHD Min PhD Maya MEng
Chong Meng [PhD Chong Meng [PhD Michael | MEng
Matthew |Senior Matthew |Senior Min PLD

Nidhi MEng Nidhi MEng Nidhi MEng
|Tm:u |Sem'0r |Tm:|:l |Seni0r |Phj]ip |}r’[Eng
Philip MEng Philip MEng Rob Faculty
|f'v’Ia§_.fa |f'v’[Eng |f'v’Ia§_.fa |f'v’|_'Eng |Tm:|:1 |S enior

Figure 4.2 Table sorting demo: First the script adds headers to the column and then the user can click on a
header to sort the column. Here, the user clicked on the header of the first column.

4.3 Concatenating a Sequence of Pages

Search results and long articles are often split into multiple web pages, mainly for faster
downloading. This can inhibit fluid browsing, however, because the entire content is not
accessible to scrolling or to the browser’s internal Find command. Some articles offer a link to
the complete content, intended for printing, but this page may lack other useful navigation.

Matthew Webber [24] has written a Chickenfoot script that detects a multi-page sequence by
searching for its table of contents (generally a set of numbered page links, with Next and
Previous). When a table of contents is found, the script automatically adds a Show All link to it
(Figure 4.3). Clicking this link causes the script to start retrieving additional pages from the
sequence, appending them to the current page. In order to avoid repeating common elements
from subsequent pages (such as banners, sidebars, and other decoration), the script uses a
conservative heuristic to localize the content, based on searching for an HTML element that
includes both the table of contents and the vertical midpoint of the page. The content element
from each subsequent page is inserted after the content element of the current page.

function showAll () {

var mostRecentNode = getPageContent ()
insert (after (mostRecentNode), "NEXT INSERT")
for (var ml = find("numberedlink in (first multipage in [body]l)");
ml.hasMatch;
ml = ml.next) {
openTab ()

go(ml.element.getAttribute ("href"))
importNode = getPageContent () .cloneNode (true)

closeTab ()
insert (before ("NEXT INSERT"), importNode)
mostRecentNode = importNode

43

The showall function gets executed when the user clicks on the Show All link. It locates the
table of contents and the links within it using the LAPIS patterns NumberedLink and Multipage,
respectively. These patterns were created by Webber. Once showa11 has the table of contents, it
iterates over each link in the table of contents, makes a connection to it in a new tab window in
Firefox, gets its content, and inserts it to the original page.

HE LOmpare = | |«
12345678 % Hext >>Show All

Figure 4.3 A "Show All" link embedded after a series of sequential links. Note that this link has the same style
of the surrounding links, so it appears like a natural part of the page. Clicking this link will cause the browser
to start downloading the other links shown here and concatenating their content to the current web page.

4.4 Coloring Java Syntax and Linking to Documentation

The text constraint patterns used by Chickenfoot can draw upon the rich library of patterns and
parsers implemented in LAPIS. Philip Rha's recent work [25] in using LAPIS to detect snippets
of other languages in documents with mixed syntax has made possible it to use LAPIS's Java
parser to find and parse Java syntax even if it is embedded in a web page. This Chickenfoot
script uses this parser for coloring embedded Java syntax:

for (¢ = find('Java.Comment'); c.hasMatch; ¢ = c.next) {
replace(c, '' + c + '')

}

The script also links each occurrence of a class name to its Javadoc documentation:

for (c = find('Java.Type'); c.hasMatch; c = c.next) {
if (c.text in classURL) {
replace(c, '' + c.text + '")

}

The effects of these scripts can be seen in Figure 4.4. Also, the c1assURL mapping in the script
above maps a Java class name, such as string, to its Javadoc URL. This mapping is extracted
from a Javadoc web site using Chickenfoot:

go("java.sun.com/j2se/1.5.0/docs/api")

click ("No Frames")

click ("All Classes")

for (link = find('link'); link.hasMatch; link = link.next) {
classURL[link.next] = link.element.href

}

These scripts mutate the page by simply wrapping each match to the Java parser with the
appropriate style or hyperlink.

44

Note: If vou couldn't care less about Java applications, vou're already familiar with
object-oriented concepts, and yvou understand the Java code you've seen so far, feel

free to skip ahead to Writing Appletse.

This section dissects the "Hello World" application you've already seen. Here, again. is its code:

_I,-"*s*x
* The HelloWorldapp class implements an application that
* gimply displays "Hello World!™ to the standard outpuat.
*f
class HelloWorldapp {
public static void main(String[] args)
System.out.println("Hello World!™); //Display the string.
H

comments in green

hyperlink created

N\

Note: If vou co

't care less about Java applications fyou're already familiar with
object-oriented condepts, and vou understand the Javafcode vou've seen solfar, feel
free to skip ahead to Witing Appletse.

This section dissects the "Hello Wax]d" application vou've glready seen. Here_ again \is its code:

*# The HelloWorldipp clas
¥ gimply displays "Hello |1
cla=ss HelloWorldapp {
public =tatic void main(3tring[] args)
System.out.println{"Hello World!™),; //Di=splay the =string.

implements an application that
rld!'"™ to the =tandard output.

H
H

Figure 4.4 LAPIS Java-snippet parser used in Chickenfoot to hyperlink to Javadoc APl and syntax-highlight
Java comments

4.5 Highlighting Vocabulary Words

Students studying for college placement exams, such as the SAT, often work hard to expand

their vocabulary. One way to make this learning deeper is to highlight vocabulary words while

the student is reading, so that the context of use reinforces the word’s meaning. One of my
Chickenfoot scripts takes a list of vocabulary words and definitions (posted on the web) and

automatically highlights matching words in any page that the user browses. The script uses a title

attribute to pop up the word’s definition as a tooltip if the mouse hovers over it as shown in
Figure 4.5.

45

for (word = find('word'); word.hasMatch; word = word.next) {
if (word.text in vocab) {
html = '<span style="background-color: yellow" title=""'
+ vocab[word.text] + "'">'
+ word + ''
replace (word, html)

}

Like the Java Syntax Coloring script, the Vocab Word script finds matches to a pattern in a web
page and uses CSS styles to draw attention to the matches.

Those who are doing most of the complaining, I do
they are (not) deliberately striving to sabotage the
effort. They are laboring under the delusion that th
when we must make prodigious sacrifices -- that t
already won and we can bg———"— u
folly of that point of view prodigious ad). Immense, the
separates our troops from their ultimate objectives
Tokyo -- and by the sum of all the perils that lie a

Figure 4.5 User viewing definition of prodigious as a tooltip after running Vocabuarly script.

4.6 Integrating a Bookstore and a Library

The last example is a short script that augments book pages found in Amazon with a link that
points to the book’s location in the MIT library:

isbn = find('number just after isbn')
with (fetch('libraries.mit.edu/"')) {
pick ('Keywords’);
enter (isbn)
click ('Search')
link = find('link just after Location')
}
// back to Amazon
if (link.hasMatch) {
insert (before('first rule after "Buying Choices"'), link.html)

}

The script extracts the ISBN number from the book's page on Amazon using find. Then it
fetches the MIT library page and fills its search form using pick and enter. click is used to
submit the search request, and when the search results page loads, the script uses find to extract
a hyperlink to the book's availability and uses insert to slip the link into the Amazon page. The
final product of this script is shown in Figure 4.6.

46

MORE BUYING CHOICES

L3 used & new from $17.50
Dewey

Library - Stacks | QA76.758.B75
1995

Available for in-store pickup

now from: 334 99
Price may vary based on availability

Enter your ZIP Code

© Choose a store |

Hawve cne to sell? |.r Sell !EUFS hera i

Figure 4.6 Book availability in MIT Library inserted among Amazon purchasing options.

47

48

Chapter 5 User Interface Design

Embedding the Chickenfoot development environment inside a popular, modern web browser is
a key element of its design. If Chickenfoot were a standalone application, then it would be
difficult for end-user programmers to write scripts because the site to be scripted may not be in
view. Further, it would reduce the spontaneity of Web scripting because the user may be loath to
start another application when he is in the middle of doing something in his browser — if the user
encounters a problem from within the browser that could be solved by end-user scripting, then he
should be able to solve the problem from the browser. Creating a special web browser to contain
the development environment, as LAPIS and Haystack [26] do, also suffers from the "reduced
spontaneity” problem. What's worse with these instrumented browsers is that users expect the
same level of support for their bookmarks, plugins, etc., as they have in their preferred browser;
however, such support is often deficient because it is not a priority for the developers.

5.1 Layout Decisions

Embedding a development environment into a web browser is a challenge because it needs to
have enough screen real estate to be a useful tool without taking up so much space that it
interferes with the user's browsing. Chickenfoot is implemented as a sidebar, just as History and
Bookmarks are in most web browsers, so it takes up no more space than other common sidebars.
This also means that the development environment can be hidden when it is not needed, but that
it can be opened quickly, encouraging spontaneous scripting.

As the user's main goal will be script development, the editor for writing the script is the top half
of the sidebar. Tools to help with script development are in the bottom half of the sidebar. Each
tool is used independently, so they are grouped together in a tabbed pane so that only one tool is
visible at a time. This ensures that each tool has as much screen space as possible, and that the
editor is always in view when a tool is being used.

The interface is implemented in XUL [27], as that is the standard windowing toolkit for Firefox.
Using XUL ensures internal consistency with the rest of the Firefox Ul

49

5.2 Panel Design

The sidebar is divided into two panels. The Editor panel appears on top and contains a toolbar
and the script editor. The Tools panel appears on bottom and contains four panes, each of which
contains a tool for script development. This section describes each of these components, with the
exception of the Triggers pane which is described in the next section.

5.2.1 Editor Panel

As shown in Figure 5.1, the top of the interface contains a toolbar with iconified buttons that run
standard file input-output commands: Open, Save, and Save As. There is also a Run button that
executes the current script and a Clear button to clear the editor. The Clear button is placed away
from the other buttons to reduce the chance that it is clicked by accident. A toolbar was chosen
instead of a menubar because it would be the second menubar in the interface, far from the top of
the browser window with its own File menu, which would be inconsistent with the way
menubars are used in other desktop applications.

The script editor appears below the toolbar. Because there is no room for standard Edit menu
commands in the toolbar, they are available in a context menu when the user right-clicks in the
editor. The standard keyboard shortcuts for the Edit commands work in the editor as well, so
these commands should be learnable even if they are not visible. The editor also supports syntax
highlighting to help reduce syntax errors.

?Eﬂ Q E c{t} File: sat-words.js %‘

gol'http://www_bolinfest_com/teat/3at—words _html"', trg;
var doc = document.implementation.createDocument (™",
doc.a3ync = false;
doc_load {("http://www_bolinfest_com/test/sat-words_xml
words = {}
elements = doc.getElementsByTagiName ("word™)
len = elements.length
for (var i = 0; i < len; i++) {

node = elements.item{i)

words [node _.getittribute { "word')]
= node _getittribute('def')

}

£F uaing a full border prewvents

f£F title attribute from being displayed on mousecwver
atyle = "background-color: $#FFFFCC; border—top: =solid
word = find({"word")

for | ; word_hasMatch; word = word_next)
if (word.toString({) in worda) {

html = "<span style="" + style + "'
+ "title="" + worda[word] + "">°
+ word _vf
< B

Figure 5.1 Editor Panel

50

5.2.2 Tools Panel

The first pane in the tools panel is the Output pane, which is analogous to standard out and
standard error in other programming systems. The user can write to the Output pane using the
Chickenscratch command output (), which takes a variable number of arguments and prints
each argument to the Output pane, in order. If a Chickenfoot script throws an error, then the error
will also be printed in the Output pane. Values written to Output during the current execution of
the script appear in black whereas values from previous runs appear in gray. This makes it easier
to distinguish new output from old output.

7 + 4

Output | Patterns | Actions | Triggers

Qutput: Q@;&

10

Figure 5.2 Output Pane

The next two panes, Patterns and Actions, are tools that aid in development, but also attempt to
increase the learnability of the system. The Patterns pane presents the user with matches to a
predefined list of LAPIS patterns that Chickenfoot has found in the page. This introduces the
user to patterns that he may not have realized were supported in Chickenfoot, such as
EmailAddress. The Patterns pane also lets the user type in a pattern and see if it matches
anything in the page.

51

Output | Patterns | Actions ||Triggers|

Pattern: |Mumber
3 matches for: Number
Pattern Names
[=] Business [ﬂ
Date
[+ Number (3
Characters
[= English
é---Eentenn:E (16)
=-Word (1134)
~-Allcapsword (11)
- CapitalizedWord (200)
é-"LDWEFCaSE'I."'.I'DFd (208)
. MixedCaseWord (25) M

Figure 5.3 Patterns Pane

The Actions pane keeps a log of the user's actions in the browser: clicking on links, checking
radio buttons, etc. This log is formatted as a list of Chickenfoot commands. The goal is that a
user can watch what appears in the Actions pane as he browses to learn what Chickenfoot code
he should write to automate what he just did. In this way, Chickenfoot can act as a macro
recorder, but unlike existing recorders, it indiscriminately records all actions instead of requiring
the user to start and stop the recorder. This lets users can go back and retrieve a copy the
transcript later, even though they may not have realized that such a log would be valuable at the
time it was recorded.

buu:rL.l_tﬁ-Patterns-l Actions I.Trigger.s-l

Action History: Q&‘

click {™Hext =" Eﬂ
go{"httpsa://webaurveyl mit_edu/fegi-bin/career™)
click ("FINISH >>")

goi{"httpa://websurveyl mit_edu/fegi-bin/career™)
go{"http:/ /fwww_3Bcherryst.com/directions._php")

go{"http:/ fvww_tgquealy.com/™)

go{"http:/ fvww_tgquealy.com/blog._php™)
go{"http:/fvww_tgquealy.com/blog._php™)

click{"™wiki ™)

go{"http:/ vww.tquealy.com/wiki /HomePage™)
go{"http:/ fvww_tquealy.com/blog.php™)
goi{"http:/fvww_bolinfest com/test/sat-words_html"™)
goi{"http://vww_bolinfest.com/test/table _html"™)

<l | @)

Figure 5.4 Actions Pane

52

Although the current implementation of Chickenfoot is not as reliable as LiveAgent or WebVCR
in recording every user action, the recorded transcript is more accessible in Chickenfoot than it is
in these tools, making it easier for end-users to edit and understand. Improving Chickenfoot's
recording capability is future work.

5.3 Trigger Design

For a user to seamlessly integrate Chickenfoot automations and customizations into his browser,
he should be able to trigger Chickenfoot scripts by his ordinary browsing habits. Chickenfoot is
designed so that it can run a script automatically when a user navigates to a URL, even if the
Chickenfoot sidebar is not currently visible.

5.3.1 Defining Triggers

A user can define a collection of URLs that can trigger a script. Because a URL may trigger
multiple scripts, the user must also impose a total order on the triggers so that Chickenfoot can
run them sequentially. The alternative would be for Chickenfoot to try to run all scripts that
matched a trigger in parallel; however, this would likely lead to concurrency issues.

Because Chickenfoot is designed for end-user programmers, asking users to provide a regular
expression to determine which URLs should trigger a script is too technical. Instead,
Chickenfoot uses the simple pattern matching scheme for URLs used by the Adblock Firefox
extension [28]. This scheme asks the user for a URL that may contain asterisks as wildcards, and
uses it to produce a regular expression for matching URLs. To convert the URL to a regexp, it
escapes all of the special regular expression characters with backslashes (such as periods and
question marks) and replaces asterisks with the dot-star repeat operator. It also adds appropriate
start and end anchors, and makes the regexp case-insensitive. For example, if the user provides:

http://*.sun.com/*

then the regular expression produced to match this pattern will be:
/~http:\/\/.*\.sun\.com\/.*$/1

This regexp will match these URLs:

http://www.sun.com/
http://java.sun.com/
http://Jjava.sun.com/tutorial/index.html

But not these:

http://www.sunsets.com/
http://java.sun.net/

This scheme aims to be simple and to meet user expectations. Greasemonkey also uses this
scheme to define URL triggers.

53

5.3.2 Triggers Pane

The Triggers pane is shown in Figure 5.5. It has a list of the triggers that the user has configured.
Each item in the list shows the trigger's name, its URL pattern, and whether it is currently
enabled. From this pane, the user can add or remove triggers, temporarily disable or enable
triggers, or edit the name of a trigger. There is a separate checkbox for globally disabling all of
the triggers if the user wants to disable Chickenfoot temporarily without losing his current
settings in the Enabled? column.

Output | Patterns | Actions ITFiEIEIEFS |

[] 1gnore &l triggers ‘} a I 4

Mame Induded Pages Enabled?
Targetalert = E

SAT Tutaor http: /fwww. nytimes. com™®]
Multipage http:/fwww.google.comfsearch® []
Hyperlink Java Types http:/Fsun.com™]

Figure 5.5 Trigger pane

54

55

Chapter 6 Keyword Pattern Survey

One of the novel aspects of Chickenfoot is the use of keyword patterns to identify page elements,
such as "search button" and "address textbox." A similar technique is used by Google to
associate search terms with pictures on the Web, and the success of Google Image Search is
testament to the viability of this approach. However, image elements often have obvious labels,
in the form of ALT or TITLE attributes, making it easier to deduce names for these images.

I was interested in testing this approach for naming web froms because I wanted Chickenfoot
users to be able to write scripts that could uniquely identify form elements without having to
look up the web site's name for the element. Another possibility I considered was trying to
automatically produce logical names for form elements and inserting them into the web page,
near the element, providing users with names for elements that they could find in the rendered
model. Unfortunately, this seemed even harder than resolving keyword patterns because the
space of names to consider is so large. However, the converse is a more tractable problem
because on any given web page, the number of input elements is relatively small, making the
problem of resolving a user-provided name to a web form much more tractable.

To explore the usability of this technique when applied to web forms, I conducted a small study
to learn what kinds of keyword patterns users would generate for one kind of page component
(textboxes), and whether users could comprehend a keyword pattern by locating the textbox it
was meant to identify. The results collected in this survey were used as training data to motivate
the algorithm used to resolve keyword patterns in Chickenfoot. The algorithm's procedure and its
performance on the training data is explained in the next chapter.

6.1 Method

The study was administered anonymously over the Web. It consisted of three parts, always in the
same sequence. Part 1 explored freeform generation of names: given no constraints, what names
would users generate? Each task in Part 1 showed a screenshot of a web page with one textbox
outlined in red, and asked the user to supply a name that "uniquely identified" the marked
textbox. Users were explicitly told that spaces in names were acceptable. Part 2 tested
comprehension of names that we generated from visible labels. Each task in Part 2 presented a
name and a screenshot of a web page, and asked the user to click on the textbox identified by the

56

given name. Part 3 repeated Part 1 (using fresh web pages), but also required the name to be
composed only of "words you see in the picture" or "numbers" (so that ambiguous names could
be made unique by counting, e.g. "2nd Month").

The whole study used 20 web pages: 6 pages in Part 1, 8 in Part 2, and 6 in Part 3. The web
pages were taken from popular sites, such as the Wall Street Journal, the Weather Channel,
Google, AOL, MapQuest, and Amazon. Pages were selected to reflect the diversity of textbox
labeling seen across the Web, including simple captions (Figure 6.1a), wordy captions (Figure
6.1b), captions displayed as default values for the textbox (Figure 6.1c), and missing captions
(Figure 6.1d). Several of the pages also posed ambiguity problems, such as multiple textboxes
with similar or identical captions.

Subjects were unpaid volunteers recruited from the university campus by mailing lists. Forty
subjects participated (20 females, 20 males), including both programmers and nonprogrammers
(24 reported their programming experience as "some" or "lots," 15 as "little" or "none," meaning
at most one programming class). All but one subject were experienced web users, reporting that
they used the Web at least several times a week.

Type the word shown
User Name: in the box below:

Password:

................

[#] Remember me RIS e ;;;-,..7.154. F
(a) (b)

Web Images Groups™=™ New:
- Erter city or US zip ||

[Google Search " I

(c) (d)

Figure 6.1 Examples of textboxes used in the web survey

6.2 Results

We analyzed Part 1 by classifying each name generated by a user into one of four categories:

e Visible if the name used only words that were visible somewhere on the web page (e.g.,
"User name" for Figure 6.1a)

e Semantic if at least one word in the name was not found on the page, but was
semantically relevant to the domain (e.g., "login name");

e Layout if the name referred to the textbox's position on the page rather than its semantics
(e.g., "top box right hand side")

e Example if the user used an example of a possible value for the textbox (e.g.
"johnsmith056").

About a third of the names included words describing the type of the page object, such as "field,"
"box," "entry," and "selection;" we ignored these when classifying a name. The prevalence of

57

"field" and "box" was a significant result in motivating the design of keyword patterns because it
suggested that these words should be ignored for a keyword pattern to enter () where the
system already knows that it is looking for a textbox, but that these words should be treated as
special identifiers for a keyword pattern to £ind () because it indicates the type of element that
the user is trying to match rather than keywords to match in the page. Indeed, supporting
keyword patterns that end with 1ink, button, textbox, etc. was a direct result of this survey.

Two users consistently used example names throughout Part 1; no other users did. (It is possible
these users misunderstood the directions, but since the study was conducted anonymously over
the Web, it was hard to ask them.) Similarly, one user used layout names consistently in Part 1,
and no others did.

The remaining 37 users generated either visible or semantic names. When the textbox had an
explicit, concise caption, visible names dominated strongly (e.g., 31 out of 40 names for Figure
6.1a were visible). When the textbox had a wordy caption, users tended to seek a more concise
name (so only 6 out of 40 names for Figure 6.1b were visible). Even when a caption was
missing, however, the words on the page exerted some effect on users' naming (so 12 out of 40
names for Figure 6.1d were visible). This was a promising result in that when forced to name an
unabeled element, one quarter of users still opted to use the page author's words to come up with
a name rather than their own.

Part 2 found that users could flawlessly find the textbox associated with a visible name when the
name was unambiguous. When a name was potentially ambiguous, users tended to resolve the
ambiguity by choosing the first likely match found in a visual scan of the page. When the
ambiguity was caused by both visible matching and semantic matching, however, users tended to
prefer the visible match: given "City" as the target name for go.com, 36 out of 40 users chose
one of the two textboxes explicitly labeled "City;" the remaining 4 users chose the "Zip code"
textbox, a semantic match that appears higher on the page. The user's visual scan also did not
always proceed from top to bottom; given "First Search" as the target name for eBay.com
(shown in Figure 6.2), most users picked the search box in the middle of the page, rather than the
search box tucked away in the upper right corner. This suggested that supporting ordinals such as
"first" and "second" to distinguish elements with similar labels would be difficult — other
resolution techniques would need to be employed.

58

Buy | Sell | My eBay ‘ Community ‘ Help ‘ I Advanced Search

I \ ® home pay | register | services | site map Start new search

Hella! Sign in or register Powered By

Buying new items, brand names, and collectibles on eBay is simple. Here's how it works... @ Live hel

_——
!'I Ftnd 2: Buy \3,: Pay Tsunallinill_]i[saslel
- elie
. Place a hid or Buy it How Pay for your itemf FERTAEL)
2 Simply enter your maximum host sellers accegpt PayPal, Make a Donation
price and eBay will bid as thn_a fast and free fvay to pay
Saarch Tips €] How to Seard needed for you. Dan't want Wiith PayPal, ygu'll alzo be W
Browse for an item to wait? Purchase instantly prntgctedlup tofk1,000 on F
Select a category... [with Buy It Mowl gualified listin Buy an ltem
= for Relief
Specialty sites: ST
=Bay Motors | =Bay Stores Most users chose the box on the left for ==
"First Search” instead of the box at the top. ottty
Group
Reqizter Maow | 4il| How to Register
| Featured ltems all featured items...

Registration Benefits:

14K EXQUISITE ART DECO AMETHYST HANDMADE. ..
= Personalized shopping page

= “our favorite saved searches Disney Mickey Mouse Chilmark MetalArt On__
= Most-wanted-itern notifications
= Access to last-minute bargains Light Maotion Industries Mako Elite Under...

PayPal Buyer Protection
5.0 ACRE COLORADO RAMNCH / LAND 4 SALEB...

Already Registered? Sign In
i 512,700 DAMIEL ROTH GENTS PREMIER DIAMO...

MY MOM FREAKED! SHE LOST 30LBS IM 30 DAY...

Global Sites

Selectone... v

Figure 6.2 Most users selected the left box rather than the top one for "First Search" in Part 2 (ebay.com)

Part 3's names were almost all visible (235 names out of 240), since the directions requested only
words from the page. Even in visible naming, however, users rarely reproduced a caption
exactly; they would change capitalization, transpose words (writing "web search" when the
caption read "Search the Web"), and mistype words. Some Part 3 answers also included the type
of the page object ("box", "entry", "field"). When asked to name a textbox which had an
ambiguous caption (e.g. "Search" on a page with more than one search form), most users noticed
the ambiguity and tried to resolve it with one of two approaches: either counting occurrences
("search 2") or referring to other nearby captions, such as section headings ("search products").

59

60

Chapter 7 Keyword Pattern Algorithm

We now describe the heuristic algorithm that resolves a keyword pattern to a web page
component. This algorithm is used for identifying the following components: textfields,
textareas, lists, drop-down boxes, push buttons, checkboxes, radio buttons, and hyperlinks. Given
a keyword pattern and a web page, the output of the algorithm is one of the following:

e the component on the page that best matches the pattern
® ambiguous match if two or more components are considered equally good matches
® no match if no suitable match can be found.

The outline of the algorithm is as follows: first, the visible text in the page is carved up into
groups called text blobs. Each blob is then compared to the keyword pattern, and blobs that
include the pattern (within a tolerance) are kept in a list. Once this list has been created, the
algorithm compares each blob with each component of interest in the page, e.g., if it is trying to
match the keyword component with an element that lets users enter text, then textfields,
password fields, and multiline textareas are the components of interest. In this comparison, each
blob-component pair is given a score. If this set of pairs is nonempty, then the component of the
pair with the highest score is returned by the algorithm.

7.1 Finding Text Blobs

The first step in resolving keyword patterns is to carve the visible text of an HTML document
into text blobs that the keyword pattern will be matched against. A text blob is a visible string of
content in the web page delimited by the opening and closing tags of a partitioning HTML
element. A partitioning element is an ancestor of a group of text nodes that appear together in the
rendered page. The heuristic used to decide whether an element is a partitioning element is its tag
name. For example, a <p> tag blocks off a paragraph in HTML, so all of the text nodes under that
node are likely to be part of the same blob. However, a tag is generally used to add boldface
for emphasis within a section of text, so it is not considered a partitioning element. The HTML
tags that represent partitioning elements in this algorithm are listed in Appendix B.

Consider the snippet of a web page shown in Figure 7.1 and its corresponding DOM in Figure

7.2. Although the text "with all of the words" appears to be one unit in the rendered model, it is
actually made up of three text nodes in the DOM. Because a user may use "with all words" as a

61

keyword pattern for the first textfield, it is important for the algorithm to compare the pattern to
the concatenation of these three nodes rather than to each one individually.

with all of the words
with the exact phrase
with at least one of the words

without the words

Figure 7.1 Rendered model of web page with multiple textfields (www.google.com/advanced _search)

“with” | 2 the” “with” “with” 2l the” \ 4 the .
\ words words \ words
sall the exaﬂct at Ie?st “without”
phrase one

Figure 7.2 DOM of the web page shown in Figure 7.2 (www.google.com/advanced _search)

To determine which text nodes constitute a blob, a preorder traversal is done over the DOM tree.
Every time a partitioning element is reached, a new blob is created and every text node under
that element is added to the blob. If the partitioning element has a partitioning element as a child,
then text nodes that appear under its child belong to its child's text blob, not its own.

Once all the blobs have been found, the text of the nodes within the blob is concatenated into a
string (again, by a preorder traversal of the nodes in the blob) and an entry pairing the string with
its partitioning element is added to a map. For the DOM in Figure 7.2, this map would contain
the following four entries:

62

Blob content Partitioning element
"with all of the words" first TD under first TR
"with the exact phrase" first TD under second TR
"with at least one of the words" first TD under third TR
"without the words" first TD under fourth TR

Figure 7.3 Map of text blob content to the partitioning element that contains it

Certain partitioning elements, such as sCRIPT and STYLE, must be treated as special cases
because the text nodes that they contain are not visible in the web page, so those text nodes
should not be considered when doing keyword matches, and therefore do not become part of a
blob.

7.2 Determining Candidate Text Blobs

Once the mapping from blobs to partitioning elements has been built, an E-score is calculated for
each blob. An E-score (for edit distance score) is a number from O to 1 that reflects how strongly
the blob contains the keyword pattern. If the E-score exceeds a certain threshold, then the blob is
added to a list of candidate blobs.

When the pattern is a substring of the blob, then the minimum value of the E-score is 0.95. If the
pattern and the blob must are the same string (when normalized), then the E-score is its
maximum value, 1.0. This is because exact matches should be ranked higher than substring
matches. For example, if a web page has one link labeled "MIT" and another labeled "MIT
Libraries," then the keyword pattern should identify the first link instead of considering the two
links equally. If it did not, and the algorithm returned ambiguous match, then this would
inconsistent with user expectations because identifying an element by its exact name should be
unambiguous.

Keyword patterns that are not substring matches should not be disregarded altogether. Users may
omit or transpose words in their keyword patterns, such as using "all words" as a keyword
pattern to match the first blob in Figure 7.1. However, not all non-substring matches should be
ranked equally: patterns that do a better job of matching a blob should have higher E-scores.

To calculate an E-score for a blob B, I augment a conventional edit distance algorithm [29] as
follows. First, both the blob and the pattern are normalized by eliminating capitalization and
punctuation, and by replacing a sequence of whitespace characters with one space. Then the blob
is searched for an approximate occurrence of the pattern P, using the edit distance algorithm to
tolerate typos and omitted words. If the edit distance D is zero, that is, if the pattern is a substring
of the blob, then the value of the E-score is:

0.95 + 0.05 * (IPI/ IBI),
but if D is nonzero, then the value of the E-score is:
0.95 - (D/IPI).

When D is nonzero, that means that the pattern requires D insertions or deletions to be a
substring of B. If the entire pattern would have to be edited to match B, then D is the length of

63

the pattern, in which case the E-score is 0, indicating that B does not match the pattern, as
desired. But when D is less than the length of the pattern, then it is scaled so that blobs that
require fewer edits have larger E-scores than those that require more edits. Note that an E-score
for D equal to zero will always be higher than an E-score for a nonzero D. This scheme favors
substring matches, as desired.

7.3 Determining Candidate Matches

Once the list of candidate blobs is constructed, the next step is to find components that are likely
to be associated with the blob. This is done by taking the bounding box in the rendered web page
(b-box) of the root node for each blob and comparing it to the b-box of each component of the
type for which a match is sought. For example, when keyword pattern matching is used in the
context of the enter command, only the bounding boxes of textfields are considered.

When the b-box of the blob is to the left of the b-box of the component and the top and bottom of
the blob b-box are within the top and bottom of the component b-box (plus some small
threshold), then the blob b-box is considered a left match for the component. A right match is
determined in a similar manner.

If the top of the b-box of the component is within some threshold distance (which is currently 1.5
times the height of the component b-box) from the bottom of the blob b-box and the left edge of
either b-box is contained within the width of the other component, then the blob b-box is
considered a above match for the component.

Examples of these different types of matches are shown in Figure 7.4.

64

Label roughly aligned with box

Label misaligned with box

Label just to the right of the start of the box

1
Label just to the left of the start of the box

text unrelated to box

text too far above box

Figure 7.4 Comparing text blobs with textfields for matches. Bounding boxes of text blobs appear in gray and
textboxes appear in black. Some edges of the boxes are extended to show how the boxes line up.

7.4 Evaluating Candidate Matches

The context of keyword pattern matching determines the strength of a match. For example, when
using a keyword pattern to identify a textfield, a left match is considered stronger than a right
match because text boxes are usually labeled to their left. For a checkbox, however, a right
match is considered stronger than a left match because checkboxes are usually labeled to their
right. To accommodate the differences between contexts, each blob-component pair is given a

LEFT MATCH

NO MATCH

ABOVE MATCH

ABOVE MATCH

NO MATCH

NO MATCH

strength index as a function of the following heuristics within each context:

Type. As described above, the type of match that is considered more likely is determined by the
context of keyword pattern that is trying to be matched. These differences are summarized in

Table 7-1.

65

Type being matched Special conditions

Textfields, textareas, lists, and | The raw strength index of a right match is scaled down by 60%.
drop-down boxes

Checkboxes and radio buttons | The raw strength index of a top match or a left match is scaled

down by 60%.

Hyperlinks If the text blob's element is not a descendant of the link, then its
strength index is 0.

Push buttons If the text blob's element is not a the button itself, then its

strength index is 0.

Table 7-1 Special conditions for each type of component matched by this algorithm.

E-score. A higher E-score always contributes positively to the strength index; however, the
degree to which it contributes is determined by the context.

Pixel Distance. The distance in pixels between a text blob and its component is most helpful in
deciding which component is the best match for a blob when a blob has multiple matches of the
same type (e.g., right, left, above) by taking a "nearest neighbors" approach. Indeed, many pages
have textfields justified to the right of a page with their labels justified to the left, so this creates
a large distance between the label and the textfield that should not reduce the strength of their
association. However, consider a page that has a two-column web form:

Name: Address:

Figure 7.5 Labels that are candidate matches for multiple textfields

In this case, the keyword pattern "name" would be a left match for both textfields because it lies
to the left of each of them. Because the pixel distance between Name and the left box is less than
the distance between Name and the right box, the match between Name and the left box should
have a higher strength index. This is also an example of why textfields favor right matches — if it
favored left and right matches evenly, then the field associated with Address would be
ambiguous.

Path Length. The length of the path in the DOM tree from the blob element to the component
element is called its path length. Blobs and components that are siblings have stronger
associations than those that are not. For example, in Figure 7.2, the path length between a text
blob and the InpPUT it is supposed to label is 3, but its path length to any other InpUT is 5.

Using path length can help eliminate false positives that occur when text in one section of a page
coincidentally lines up with a component in another section. Web portals and pages with sidebars
are prone to this type of error, as shown in Figure 7.6. In the Figure, the text "Search" appears at
least twice in the page. The first instance lines up with the main Yahoo! search box, and the
second instance lines up with the Weather search box. Using the pixel distance between the blob
and the textfield to determine the better match is error-prone when the pattern happens to appear
at the edge of its block. Although search the web is be closer than search Listings in this
example, this is a coincidence and is not a reliable heuristic.

66

Sections of a page often map to subtrees in the DOM. Because this type of mismatch error is
caused by matching across sections of a page, path length is a good heuristic to combat this
problem because it will rank pairs of nodes that are closely related in the DOM higher than those
with a more distant relationship.

| “@ e I Yahoo! Search I :;;dvanoedﬁ |
Yahoo! Messenger - Hide from Clyde. Be seen by Gene. Get control with Stealth settings.
Free mail | sign up | Mail status: Sign In DNLINE DEEHEES
Autos Horoscopes Maovies Real Estate = Associate =Bachelor's
Chat Hotlobs Music Shopping * Master's =Postgrad
Finance Kids My Yahoo! Sports START TODAY!
Game_s_ Mail News Travel classeSU-SA
GeoCities Maps People Search TV o)
Groups Messenger Personals Yellow Pages Browse All Programs - Ad Feedback
Yahoo! Shopping e = Iran quake kills at least 420, flattens villages
g d ———— = Bush warns EU not to lift China arms ban
Compare & Save on Top Products i) = Poll finds many doubt U.S. democracy push
. Cell Phones . DVDs " = Former Ga. guvernnr\fandlver dies at 86_
: = Harvard president, faculty brace for meeting
* Watches - Jewelry A :
- MP3 Players . Shoes Srmall Businass = Procrastinating on filing taxes can be u_:ostly
¥ e e hen e - Mare = Defiant Bonds sidesteps steroid q!.lestluns
b = NBA - MLB - NCAA Hoops - Tennis - Soccer
Frze Flat Panel
Buying Advice: Printers, Laptops, Home Theater Upgrade on Dell PCs News - Popular - Sports - Stocks
Yahoo! Featured Services Yahoo! Small Business
Personal Website Personals Web Hosting nline EEteuChyne S 2o Code
= : ; S e |
Live NCAA Audic HotJobs Domain Mames {Search) r=trmg= - I Go |
T S Save location on this page

Figure 7.6 Screenshot of the Yahoo! home page with amiguous textfield match for "Search" (yahoo.com)

The result of calculating the strength indices from these heuristics is a list of (component,
strength) pairs ranked by strength. The algorithm returns the component of the top pair, unless
the top two pairs have the same strength, in which case it returns ambiguous match. If the list of
pairs is empty, then it returns no match. Some contexts will only use a subset of these heuristics
to calculate the strength of a pair, and then will only use the remaining heuristics in the event of
an ambiguous match.

7.5 Evaluation

I evaluated this algorithm on the 240 names (40 for each of 6 pages) generated by Part 3 of the
study. Its performance is shown in Figure 7.7, and the screenshots, along with some of the
responses that users provided, appear in Figures 7.8-7.13. For each name, Chickenfoot either
found the right textbox (Match), reported an ambiguous match (Ambiguous), or returned the
wrong textbox (Mismatch). Precision is high for 5 of the 6 pages. Performance is poor on the
MIT page (shown in Figure 7.11) because it involved an ambiguous caption, and my heuristic
algorithm does not yet recognize the disambiguation strategies used for this caption (counting
and section headings). Also the 100% success rate on Vivisimo (shown in Figure 7.12) may be
misleading because that page only had one textfield; however, my algorithm disregards labels

67

that it believes are unrelated, even if there is only one textfield on the page, so the result is not
insignificant.

This evaluation is only preliminary; a proper evaluation should use a larger selection of web
sites. Nevertheless, it suggests that keyword patterns can be automatically resolved with high
precision.

100% -
90% -
80% -
70% -
60% - @ Mismatch
50% O Ambiguous
40% - m Match
30% -
20% -
10% -

0% - ; ; ; ; ;
Yahoo Expedia Amazon MIT Vivisimo Google

Figure 7.7 Results of algorithm for resolving keyword patterns on Part 3 survey data

68

w B ® YAaHOO! o« W %

Finance Music Travel Mail My Yahoo! Messenger
Select Search Categony: m Images | Directory | Local | News | Products

‘ Search the Web: || | S| A,

Yahoo! Games - Play Saints and Sinners Bingo now ok Tsunami Aid - Help support the relief effort

Free mail Mail status: Sign In List your site in Yahoo! search results.
: - Find out how - Take a tour

Autos Horoscopes Movies Real Estate Zellto : t
Chat HotJobs Music Shopping o Me WYuHoo! [overture Ig})
Finance Kids My Yahoo! Sports
Games Mail MNews Travel In the News EialEn Rulan L
GeoCities Maps People Search TV ;
Groups Messenger Personals Yellow Pages SEECE e gendg ﬁa:;tf'rnm Satur_rr_s e
Health Mohbile Photos R aron cuts ties witl as over militants

» Rising water prompts California evacuations
= U.S. soldier jailed for murder of Iragi teen

Yahoo! Movies Showtimes - Trailers * Indonesia Muslims warn against evangelism
Mow in Theaters: Coming Soon: = Kennedy cousin Skakel appeals conviction
+ Coach Carter - Assault on Precinct 13 » FDA panel debates cholesterol drug safety
- Elektra - Are We There Yet? » USC hires Tim Floyd as basketball coach

* Racing Stripes - Alone in the Dark Eaia Stack Quotes:

- Meet the Fockers - Hide and Seek Markets: PO MIURest
Dow +0.6% * Nasdag +0.8% | | Go |
Also in Theaters More Cnmlng Soon Faﬂ Zi =20 L |
Sports - Stocks - News - Popular
ZIP for Shuwtimesi

Coach Carter

Enter City or U.5. Zip Code

Web Hosting Sell Online Personal Website Personals :_15 T | = |
Domain Mames Search Listings Live MCAA Audio HotJobs - =

Save location on this page

Yahoo! Small Business Yahoo! Featured Services

| Entertainment » More Entertainment

Figure 7.8 Yahoo! home page (www.yahoo.com) shown in Part 3 of the user study. Users' names for the
search box included: "Search," "Search the Web," "First Search," and "Seach [sic] the Web Text Box."

69

Delta Air Lines: Get lower, more flexible fares!

& Expedia.com:
B ights Thotels Cruises | sctvties | eitioe mapS | LA

Welcome, Michael Sign in/Sign out

Site Map |1 Mv Trips | g5 M Account | (Z) Customer Support

¥,

Get toasty ... for less!
Air+hotel in Florida, Mexico

Hawvaii, or the Caribbean
from 8272

Where To?
Hotel deals from $49

CREATE YOUR OWN TRIP

o2 (%) Flight anly
f:.’;h) Hotel only
q‘éﬂ* () Car only
4‘3:-;) Cruise

Dgg-arti!'!_g_l_frnm:

Featured Sponsors

) Flight + Hotel

Dollar: More car for less

EBDStDH. A (BOS-Logan Intl.} |

O ERAE- T Book together Traveler Tools
O Flight + Hotel + Car and savel Travel slerte
() Hotel + Car Flight status
Driving directions
Depart: Currency cenverter

Going to:

Adults: l(age 19-54)

L1 aa]

Seniors: (85+)
| o [+]

[¥] Lo]

Children: (0-18)

mmddlyy | | Anytme v

| Anytime

Airport information
Get deals via e-mail

[1] Pazsport Informaticn

Agents on call 24 hrs.

Las Vegas Caribbean
Mexico Hawaii
Florida Europe
QOrlande New York
Air deals Cruize specialz

More destinations & deals...

Trumg World Magazine
an
Expedia prasem

The Apprentice
Legend Cruise

Love the show?
Take the cruise!

Vizit men.com

Maore flight search options:
Flexible dates, One-way trips...

D /Carnival.

@ Search for flights

Just more funie
Value, choice & Fun!

NYC hotel sale

Book now for big =avings in
the Big Apple: Practical
hotelz from $79, premium
from 5120, posh from $159
() Bag an NY'C bargain

New! Cruise sale

Get hot dizcounted rates,
special bonuses, upgrades,
and a gift certificate worth
up to S300¢

(3) Sail off with a deal

SKIMagazine, FREE
Just buy your lift ticketz or
rent =ki gear on Expedia
and get thiz great =ki mag,
free for a year

() Save on vour flight

about Expedia, Inc. | Expedia, Inc terms of use | privacy policy | become an sffiliate | advertising | jobs
site map | hotels | cars | cruises

Expedia, Inc is not responsible for content on external Web sites. 22008 Expedia, Inc. All rights reserved.
Photos: Getty Images, Corbis

Plus sign [+) means taxes and fees are additional.

International sites:

United Kingdom |

Cangda | GCemany |

France |

Netherlands

ltaly |

Figure 7.9 Expedia home page (www.expedia.com) shown in Part 3 of the user study. Users' names for the

return date field included: "return,

return date,

70

trip return,” and "Return mm/dd/yy."

Shop in

Spoﬂing amazoncom. & VIEW CART | WISHUST | | YOURACCOUNT) | HELP
Goods 5 .
(Bela-Whal s this?) wercome [RERHTLE ArrAREL S 1 ELecTRONICS m L

GIFT CERTIFICATES | INTERNATIONAL | NEW RELEASES | TOP SELLERS | TODAY'S DEALS | SELL YOUR STUFF
Sell your stuff at

Make room for new gifts ‘}‘* Ainiegn Markkrplis

Hello, Michael T Bolin. We have recommendations for you. (If you're not Michael T Bolin, click here.)

B siill More George W. Bushisms

seapcimsne: From Publishers Weekly
AllErodiicts M As Franken gleefully points out, Slate editor Weisberg has found a true gravy train, discovering enough
previously uncollected nonsensical utterances... Read more (¢ Recommended: Wwhy?)

Sell Your Stuff)

FREE Super Saver Shipping on
orders over $25!
Restrictions spply

(A7 WEB SEARCH

Fowerad by A3.cam

BROWSE

Your Favorites
+ Books

Revolution in The Valley (hardcover) Hardcover by Andy Hertzfeld

Featured Stores

+ Apparel & Accessories
+ Electronics

+ Jewelry & Watches

Better, Faster, Lighter Java Paperback by Bruce A. Tate, Justin Gehtland
Avg. Customer Review: o

User Interface Design for Programmers Paperback by Joel Spolsky

New Stores Avg. Customer Review:

In Beta (What's this?)

« Musical Instruments

+ Gourmet Food

+ Health & Personal Care
« Beauty

« Sports & Qutdoors

b See more from your Wish List

Books, Music, DVD

. 7[8,2%@ Recommended For You
. Magazine Chasing Amy - Criterion Collection

Amazon.com

wWriter-director Kevin Smith (Clerks) makes a huge leap in sophistication with this strong story about a
comic-book artist (Ben Affleck) who falls in love with a lesbian (Joey Lauren Adams]) and... Read more
(% Recommended: Why?)

Electronics & Office

Top Sellers

—in—

Sports &
Outdoors

American
Red Cross

Click here to donate to the
South Asia Disaster Relief

$25 Off Tools &

Hardware

Sayve Right now, take

325 off when

$25 you purchase
tOday $199 or more of

Tools & Hardware offered

by Amazon.com.

@ Michael, see your
New Releases
(If you're not Michael, click
here.)

New Releases

Witness
by Amber Frey
(Rate it)

Figure 7.10 Amazon home page (www.amazon.com) shown in Part 3 of the user study. Users' names for the

search box included: "Search Amazon," "ProductSearch," "Search1," and "search 2."

71

Emergency Contact Information

Instructions for formatting International Addresses

PERSON TO NOTIFY IN CASE OF EMERGENCY:

Hame-First: Last: Mi:
Eelationship:| Mother :V:
Street line 1:
Street line 2:

Street line 3:

City: 5t: Zip: -
Nation: [List Nation Codes]
Phone: - ext: Home
Phone: - ext: Work/other
Intl Phone: Home
Intl Phone: Work/other

If ABOVE PERSON IS NOT AVAILABLE NOTIFY:

Hame-First: La=t: M1 J

Eelationship:| Father fadl
Street line 1:
Street line 2:

Street line 3:

City: S5t Zip: -
Hation: List Mation Codes
Phone: - EeMET: Home
Phone: - exET: Work/other
Intl Phone: Home
Intl Phone: Work/other
RELIGIOUS PREFERENCE: |

Figure 7.11 MIT emergency contact information page shown in Part 3 of the user study. Users' names for the
search box included: "MI2," "Notify Mi Two," "Emergency2Mi," "backup contact mi," "Mi," "above person not
available Mi," "Name MI," and "Contact 2 Mi."

72

v Vivisimo

company products solutions customers demos press

T e e T T e e e i e

| Searchthe Web V!

Vivisimo

Velocity

Solutions
Enterprise
Life Sciences
Government
Publishing
Web Search

New Enterprise Search, Metasearch & Clustering Software
Highly Customizable, Rapid Deployment

Latest News
Vivisimo Named to the EContent
100

Introducing the Clusty Firefox
Toolbar

Vivisimo Introduces Velocity for
the Enterprise

Introducing Clusty the Clustering Pittsburgh's goin' t R
Engine

Vivisimo is hiring! Q

Figure 7.12 Vivisimo home page (www.vivisimo.com) shown in Part 3 of the user study. Users' names for the

search box included: "search,

web search," "Cluster," and "vivisimo search."

Advanced Search Tips | About Google

GO L)gle Advanced Search

with all of the words

10results |v|| Google Search

Find results
with the exact phrase
with at least one of the words
without the words
Language Return pages written in any language [~]

File Format Only V, return results of the file format any format VJ
Date Return web pages updated in the anytime I"|
Numeric Range Return web pages containing numbers between and
Occurrences Return results where my terms occur anywhere inthe page 'v
Domain Only V, return results from the site or domain

e.g. google.com, .org More info
SafeSearch @ MNofitering O Filter using SafeSearch

Froogle Product Search (BETA)

Products

Find products for sale

Page-Specific Search

To browse for products. start at the Froogle home page

Similar Find pages similar to the page
e.q. www.google.com/elp. hitm!
Links Find pages that link to the page

Figure 7.13 Google advancd search page (www.google.com/advanced_search) shown in Part 3 of the user

study. Users' names for the domain box included: "site," "Domain," "only from," "Advanced Search Domain,"
"domain/site," "GOOGLE," and "return results from the site or domain."

73

74

75

Chapter 8 Implementation

In this chapter, I explain how Chickenfoot is implemented. I begin by describing Chickenfoot's
internal representation of a web page, as this is the fundamental data structure that the rest of the
system is built upon. Then I explain how Chickenfoot commands and objects operate on this
model of the page. Subsequently, I show how this model is maintained in response to changes in
the underlying page. Next, I reveal how Chickenfoot scripts are interpreted so that its functions
can be called using a standard JavaScript interpreter. Finally, I explain how page loading is
monitored so that the go command and URL triggers work as desired.

8.1 Chickenfoot Model for a Web Page

Chickenfoot has two copies of the DOM of a web page, one in Java and one in C++. This section
explains the motivation for these two copies, and how the Java DOM is created from the C++
DOM.

8.1.1 Motivation

Chickenfoot leverages the LAPIS pattern library to match web page elements against text
constraint patterns. Because LAPIS is a large codebase written in Java, and Firefox is an even
larger codebase written in C++ and JavaScript, it is impractical to translate either codebase into
the other’s language, so a Firefox-LAPIS bridge is employed so that Chickenfoot can use LAPIS.

Fortunately, Firefox is bundled with a bridge called LiveConnect [18] that enables JavaScript to
communicate with Java objects. Because Chickenfoot is written mostly in JavaScript,
LiveConnect makes it fairly easy to call into LAPIS; however, the cost of calling Java from
JavaScript is relatively expensive (see the benchmarking data in Table 8-1). To compensate,
Chickenfoot is designed so that it makes a few calls to Java with large inputs rather than many
calls with small inputs.

Java calling Java within its own Java Virtual Machine 0.03 us/call
JavaScript calling JavaScript within Firefox 15-20.00 us/call
JavaScript calling Java via LiveConnect in Firefox 950-1000.00 us/call

Table 8-1 Benchmarking data for overhead of method calls in different languages. These benchmarks were
made on a 1.7GHz laptop running WinXP, Firefox 1.0, and Java 1.5.

76

Firefox's LiveConnect technology was a major factor when deciding which web browser to use
for Chickenfoot. Microsoft Internet Explorer (IE) is a far more popular browser than Firefox, so
Chickenfoot may have wider appeal if it were embedded in IE; however, it was difficult to write
a Browser Helper Object for IE that could make calls to Java code. Also, Firefox has better
support for Web standards, such as DOM 2 [2], that are used heavily in the Chickenfoot code
base. Finally, Firefox is available on Windows, Mac OSX, and Linux, whereas IE is only
available on Windows (and to some extent, on Mac OSX).

8.1.2 Building a Bridge between Firefox and LAPIS

For Chickenfoot to use LAPIS to find pattern matches in a DOM, it must create a mapping
between the DOM in Firefox and the string model in LAPIS. This section explains the
construction of this mapping, and a flow chart of how the mapping is created appears at the end
of the section in Figure 8.3.

When Firefox loads a web page, it parses the page’s HTML and automatically creates a DOM
representation of it. Once this DOM representation has been created, the HTML source that was
used to create it is discarded in lieu of the DOM because the well-formed, structured tree
representation is more convenient for Firefox to work with than a raw string of HTML.

In order to be sure that LAPIS is matching against the same HTML that Firefox sees,
Chickenfoot creates a string of well-formed XHTML from the Firefox DOM, and sends it via
LiveConnect so LAPIS can create an equivalent HTML document. As Chickenfoot does a
preorder traversal to create this string of XHTML, it assigns each node an id number, starting at
zero, and places each node in an array at the index that corresponds to this id. Because the id
number is set as a property of the node, it is possible to get the id of a node in constant time.
Similarly, because the array is indexed by node id, looking up a node by its id is also a constant
time operation. The process of creating the XHTML from the HTML is illustrated in Figure 8.1.

77

<HTML>hi<BR\>world<P>bye</HTML>

(1) Sloppy HTML received from server. <BR\ > has an erroneous slash and HEAD and BODY are missing.

“world”

((Sighl!

(2) DOM created by Firefox HTML parser. Note that the parser adds missing HEAD and BODY nodes.

@ ‘ BODY)| “world” “sigh”
. A A 4 - /A

/

0 1 2 3 4 5 6 7

(3) DOM nodes arranged in an array after a preorder traversal. A node's index in array serves as its id.

<HTML><HEAD></HEAD><BODY>hi
</BR>world<P>sigh</P></BODY></HTML>

(4) XHTML produced by the traversal. This XHTML is sent to Java via LiveConnect.
Figure 8.1 Creating the XHTML in Firefox

Because the XHTML produced by the traversal is guaranteed to be well-formed, LAPIS can use
its XML parser to recreate the DOM in Java from the XHTML string. In Java, Chickenfoot uses
the Xerces XML parser to parse the XHTML, but then it wraps each node in the Xerces DOM
with a class called annotatedNode, and stores the tree of annotatedNodes in a class called
MozillaDocumentParseTree. By wrapping a Xerces DOM node, an AnnotatedNode can store
additional information about the node, such as the index of the node in a preorder traversal of the
tree — this will be important later when mapping from a MozillaDocumentParseTree to a
Firefox DOM.

78

Once the MozillabocumentParseTree has been created, it needs to be flattened into a string of
HTML because a document in LAPIS must be created from a string. Because LAPIS will delimit
pattern matches by offsets into this string, a mapping between positions in the DOM and
character offsets in the string is created as the DOM is flattened into HTML so that LAPIS
pattern matches can be mapped back into positions in the DOM when necessary. The process of
converting the XHTML to HTML in Java is shown in Figure 8.2.

<HTML><HEAD></HEAD><BODY>hi
</BR>world<P>sigh</P></BODY></HTML>

(1) XHTML received from Firefox to be parsed by Xerces.

,”%;smmm

“world”

“Sighu

(2) MozillaDocumentParseTree that wraps the DOM created by the Xerces XML parser.

<HTML><HEAD></HEAD><BODY>hi
world<P>sigh</P></BODY></HTML>

(3) HTML produced by traversing the MozillaDocumentParseTree. This HTML is sent to LAPIS.

Figure 8.2 Recreating the DOM and generating the HTML in Java

Unfortunately, a LAPIS document cannot be created directly from the XHTML rather than the
HTML because an XHTML document is not necessarily a valid HTML document. For example,
the XHTML in Figure 8.2 has an opening and closing tag for
, but according to the HTML
4.01 specification, closing tags are forbidden on
 as well as some other elements. Because
closing tags are required on all elements in XHTML [30] the XHTML must be converted to
HTML before being passed to LAPIS.

Another alternative would be for Chickenfoot to create a valid HTML string from the DOM in

JavaScript rather than an XHTML string; however, this would take the XML parser out of the
loop on the Java side, and so no Java DOM would be created. Without a Java DOM, it would be

79

difficult to map from LAPIS coordinates to positions in the Firefox DOM, so the additional
mapping from XHTML to HTML must remain part of the system.

It would seem that much of this complexity could be avoided if Chickenfoot simply sent LAPIS
the URL of the page that is currently being displayed in Firefox (which would surely be less
expensive to send over the JavaScript-Java boundary) and had LAPIS fetch the page and parse it
itself. Unfortunately, because LAPIS does not have the same cookies, authentication, etc. that
Firefox has, LAPIS might not get the same HTML as Firefox when it tries to access the same
URL, so this intricate mapping must be created between Firefox and LAPIS to ensure that the
two representations of the page are consistent.

wWww

(1) send HTTP
Request

(2) Receive HTML
from web site

(3) Cleanup HTML

(4) Flatten DOM as

and .
XHTML string

s Firefox create DOM | DOM Tree . UL

DOM t hould b h “XHTML and HTML are identical

- i rees snouldbe | except for some closing tags
Firefox (C++/JavaScript) dentical | , coptforsams closing ta
LAPIS (Java) :
v (6) Generate valid

(5) Parse XHTML to

; HTML for LAPIS
duplicate DOM HTML parser

DOM Tree > HTML

Figure 8.3 Construction of Mapping between Firefox and LAPIS

8.2 How Chickenfoot Operates on this Model
As described in Chapter 3, Chickenscratch provides commands that let the user talk about

objects in a web page in terms of the rendered model. This section explains how objects in this
high-level model are translated to those in the lower-level DOM.

8.2.1 How the find() Command Works

The £ind command needs to be able to take a text constraint pattern and create a list of Match
objects that correspond to the matches that LAPIS finds in the document's string model. To do
this, the first step is to run LAPIS on the HTML that was generated from the DOM in the
previous section. The matches found by LAPIS are represented as a RegionSet, which is a set of
Region objects where each Region is a substring of the HTML that contains the content of the

80

pattern match. Each Region is represented by the start and end indices of the substring in the
HTML.

The next step is to map each Region into an equivalent section of the DOM called a Range. As
described by the W3C specification, a DOM Range "identifies a range of content in a Document.
..It is contiguous in the sense that it can be characterized as selecting all of the content between a
pair of boundary-points." [31] As shown in Figure 8.4, each boundary-point is defined by a node
and an offset, so two nodes and two offsets (which are nonnegative integers) completely
determine a Range. For a boundary-point whose node is a text node, its offset is a O-based index
into the node's text string. For all other boundary-points, its offset is the node's position among
its siblings.

52 el

I =3 e3 l

<BODY><H1>T1FlE{le}{P}%#Eh XYZ.j</P></BODY>
E] ed

=1 el

BODY
I

H1 | F

"Title® "?lah x_l,lz.i"

=3 =7 e1e3
51 el

5 e
Mode [Offzet| Mode [Offzet
51 —0e1| Text1 2 Text2 2
52 ——g2 | BODY 1 B0y | 2
£3—e3| P 0 P 1
gsd——ed| Text2] Text2 9

Fange

Figure 8.4 lllustration of a Range [32]

Therefore, to convert a Region to a Range, the start and end indices of the Region need to be
converted into boundary-points. This is done by finding the most specific node that contains the
index. Consider the HTML created from the DOM in the previous section:

<HTML><HEAD></HEAD><BODY>hi
world<P>sigh</P></BODY></HTML>

The Regions that correspond to the nodes in the DOM are as follows:

81

Id | Node Value Region

0 <HTML> [0, 61]
1 <HEAD> [6, 19)
2 <BODY> [19, 54]
3 "hi" [25, 27)
4
 [27, 31]
5 "world" [31, 36]
6 <p> [36, 47]
7 "sigh" [39, 43]

Table 8-2 Regions for DOM nodes

To find the boundary point for index 41, consider each node and see if 41 is within its Region. It
turns out that the Regions for nodes 0, 2, 6, and 7 all contain index 41; however, node 7 has the
smallest Region containing 41, so it will be the node for 41's boundary-point. Because Regions
for nodes are strictly nested, there must always be a smallest Region that contains an index.

Id | Node Region
Value
0 <html> [0, 61]
1 <head> [6, 19]
2 | <body> [19, 54]
3 | "hi" [25, 27]
4
 [27, 31] -
S "world" [31, 36] 5
6 | <p> [36, 47] sworld'
7 "sigh" [39, 43]

Figure 8.5 Finding the node for the boundary-point for index 41

Since the start index for node 7 is 39, then the offset of 41 within node 7 is (41 — 39) or 2, so the
offset for 41's boundary-point is 2.

When each node knows the indices of the Region that covers it, an index can be converted into a
boundary point in O(b log, N) time where N is the number of nodes and b is the branching factor
of the DOM tree. As the start and end indices are included in each AnnotatedNode as the

MozillaDocumentParseTree is built, converting indices to boundary-points does indeed run in
O(b log, N) time.

Things become slightly trickier when a coordinate coincides with the beginning or end of a node.
For example, index 43 (the < in </p>) could be considered the boundary point at node 7 with
offset 4, or the boundary point at node 6 with offset 1. Chickenfoot prefers mapping Regions to
elements rather than substrings, so the Region [39, 43] would be mapped to the boundary-point
at node 6 with offsets 0 and 1 rather than the boundary-point at node 7 with offsets 0 and 4.

82

Elements are preferred to substrings because moving nodes in the DOM is simpler than moving
text, as shown in section 8.3.1.

Because the Firefox DOM and the Java DOM are identical trees, the index of a node in a
preorder traversal in one tree can identify the corresponding node in the other. Thus, a Range can
be sent across the JavaScript-Java boundary as two pairs of integers where each pair represents a
boundary-point such that the first integer is the index of the node and the second integer is the
offset. For example, the Range covering the children of <Bopy> could be expressed as
((2,0),(2,4)).This establishes a consistent mapping between LAPIS Regions and DOM Ranges.

Once find has a Range that corresponds to each match found by LAPIS, the final step is to
create a Mat ch object for each Range. The fields of a new Match object are a populated by a
Range by the rules in Table 8-3.

next a reference to the empty Match
hasMatch | true

count 1

index 0

range a reference to the Range

content | aDocumentFragment cloned from the Range

element | if the Range delimits a single Element node, then element is non-null
reference to that Element; otherwise, it is null

document | the HTMLDocument that range belongs to

html the HTML produced by a preorder traversal of the Range

text range.toString ()

Table 8-3 Rules for creating a Match from a Range

As find converts each Range to a Match, it builds up a linked list of Mmat ches and returns a
reference to the first Match in the sequence.

The implementation of find is outlined in a flow chart in Figure 8.6.

83

“sigh”

(6) The array of nodes is used tc
decode the integers as Ranges

GOSrIe
(7) Ranges are convertec

JavaScript |, into a linked list of Matches
Interpreter

N

|
¥ \

(1) User calls find(] .
(5) An XML Parser is used tc

q Firefox XML | extract the boundary-points from
—iicene! Parser the XML string because it is faster
than parsing text in JavaScript

A

Firefox (C++/JavaScript)

LAPIS (Java) (2) Text Constraint (4) The start and end index of
passed to LAPIS | (3) Matches each Region is converted into a
packaged as boundary-point These points
RangeSet Mozilla are encoded as (node-id offset)
LAPIS Parse pairs in XML
Tree

Figure 8.6 Implementation of find

8.2.2 How the insert() and remove() Commands Work

insert and remove work by translating their arguments into nodes and then using standard
methods for adding and removing nodes to mutate the DOM. Recall that the definitions of the
functions are as follows:

insert (Position position, Chunk chunk) // returns a Chunk
remove (Pattern pattern) // returns a Position

insert converts a Position into a collapsed Range, which is a Range whose start and end
boundary-points are the same. It then converts a chunk into a node, and uses the insertNode
method of the Range to insert the node into the DOM.

Because a Position is a Pattern, converting a Position into a Range can be broken into cases.
Recall that a Pattern is one of five types, two of which are strings, so the four cases are as
follows:

e String. Use the string as an argument to find to get a Match. This reduces the String
case to the Match case.

e Match. Return its range. Note that this may be null.

¢ Node. Create a new Range whose start and end container is the node's parent node and
whose start and end offsets delimit the node.

¢ Range. Already a Range.

84

If the Range produced by this conversion is null or is not a collapsed Range, then insert will
throw an error, as specified.

The process of converting a Chunk into a node may also be broken into cases:

e String. Use the current document to create a Range and pass the string to the Range's
createContextualFragment () method which will produce a DocumentFragment which
is a subtype of node.

e Match. If the Mmatch's range is available, this reduces to the Range case. If range is null,
then the Match's html is used, and this reduces to the String case.

* Node. Already a node.

¢ Range. Use the Range's cloneContents () method to get the Range as a
DocumentFragment, which is a subtype of node.

¢ Link or Button. Already an element node.

remove is implemented by converting a Pattern into a Range and then invoking the
deleteContents () method of that Range. A side-effect of invoking deleteContents () is that
it collapses the Range, so once the Range has been collapsed, it is a valid Position that can be
returned by remove. As the algorithm for converting a Pattern into a Range is defined above,
implementing remove is trivial.

8.3 Updates to the Model

Because Chickenfoot uses data structures that are built on top of the DOM and its derivative
Ranges, changes to either of these objects must trigger updates to Chickenfoot's data structures to
reflect the objects' new state. How Chickenfoot is notified of these changes and how it deals with
them is explained in this section.

8.3.1 Updates to the DOM

There are three types of changes that can be made to the DOM: a node can be inserted, removed,
or mutated. Fortunately, the DOM allows clients to add themselves as listeners for each of these
events, which Chickenfoot does.

When a node is added to the DOM, the node and its descendants are traversed to create a string
of XHTML in the same way an HTML document is flattened. During the traversal, the nodes are
assigned ids (starting with the last available id for the DOM) and are added to the id-indexed
array of nodes for the document. Once this is complete, the XHTML is sent over the JavaScript-
Java boundary, along with the id of the parent of the node that was inserted and the node's index
within its siblings. This information is sufficient to update the Java DOM.

In Java, the XHTML is parsed as before, and it also numbers these new nodes starting with the
last available id. It looks up the parent node by id number, and inserts the subtree that it has
created from the XHTML at the specified index among its children. This ensures that the Java
DOM is still identical to the Firefox DOM, and that the id numbers used in both DOMs are
consistent.

85

When a node is removed from the DOM, only the id of the node that was removed needs to be
sent to Java. When the Java DOM receives this id, it simply removes it from its DOM, as well.

There are two types of node mutations that can occur in the DOM: changing the text of a text
node and changing the attribute of an element. To notify the Java DOM of a change to a text
node, only the id of the node and the new text of the node need to be sent. The message for an
attribute update is also simple, requiring the id of the node whose attribute was changed, and two
strings, one for the key and one for the value of the attribute. These updates are simple to
perform on the Java DOM.

After any of these three mutations to the Java DOM, Chickenfoot must also regenerate the
HTML from the DOM so that it can create a new document in LAPIS. Fortunately, LAPIS has a
mechanism for creating mappings from old versions of documents to new ones, so this is used so
that matches in the old DOM can be translated to matches in the updated DOM.

8.3.2 Updates to Ranges

A Range over a DOM might not contain the same content after the DOM has been mutated.
Although the DOM 2 Range Specification defines a policy for Range modification under DOM
mutation, Chickenfoot adds two improvements to the standard policy. As shown in Table 3-1, a
Match can be completely determined by its range, so enusring that Ranges match the same
content after mutations to the DOM is sufficient for ensuring that Mat ches match the same
content, as well.

The DOM 2 Range specification states the following:

2.12 Range modification under document mutation

There are two general principles which apply to Ranges under document
mutation: The first is that all Ranges in a document will remain valid after any
mutation operation and the second is that, as much as possible, all Ranges will
select the same portion of the document after any mutation operation.

It then goes on to define the following policy for updating Ranges under insertions:

2.12.1 Insertions

An insertion occurs at a single point, the insertion point, in the document. For any
Range in the document tree, consider each boundary-point. The only case in
which the boundary-point will be changed after the insertion is when the
boundary-point and the insertion point have the same container and the offset of
the insertion point is strictly less than the offset of the Range's boundary-point. In
that case the offset of the Range's boundary-point will be increased so that it is
between the same nodes or characters as it was before the insertion.

The above policy for insertion is not as good as it should be in terms of maintaining the second
general principle listed in 2.12. For example, consider the following HTML:

<P><I>thingl</I><I>thing2</I></P>

86

and Ranges R1 and R2 that match the <1> elements:

R1=[(<p>,0), (<p>, 1)], soR1 corresponds to <1>thingl</I>
R2=[(<p>, 1), (<p>,2)], so R2 corresponds to <I>thing2</I>

away
.
VAV,

Figure 8.7 DOM with Range content outlined with ovals

Consider what happens when bo1ld is inserted before <i>thing2</i>. Because “the
only case in which the boundary-point will be changed after the insertion is when the boundary-
point and the insertion point have the same container and the offset of the insertion point is
strictly less than the offset of the Range’s boundary-point,” the only boundary point that gets
changed is the endpoint of R2. Therefore, after the insertion:

R1=[(<p>,0), (<p>, 1)], so R1 corresponds to <i>thingl</i>
R2 =[(<p>, 1), (<p>, 3)], so R2 corresponds to boldl<i>thing2</i>

“thing2’

Figure 8.8 DOM with Range content outlined with ovals after insertion

87

Clearly, R2 does not select the same portion of the document after the mutation operation. This
would be a problem for a Match that had R2 as its Range because its tostring () method would
return a different value after the new node was inserted even though the new node should have
no effect on the match. If the Range update policy were such that R2 would be [(<p>, 2), (<p>,
3)] after the mutation, then the Mat ch would be consistent. Therefore, Chickenfoot uses the
following policy to update Ranges, in addition to the DOM 2 policy:

For any Range in the document tree, consider each boundary-point. The boundary-point will
also be changed after the insertion when the boundary-point is a startpoint of a Range, the
startContainer is not a text node, and the insertion point is equal to the boundary-point. In
that case the offset of the Range's boundary-point will be increased so that it is at the start of
the same node as it was before the insertion.

But what about the case where the container of the boundary-point lies inside a text node? In this
case, the update is more complicated because it involves creating new nodes. Consider the
following HTML.:

<body>My cat’s breath smells like cat food.</body>
and Ranges R1 and R2 that match the string cat:

R1 =[(#textl , 3), (#textl , 6)], so R1 corresponds to the first appearance of cat
R2 =[(#textl , 28), (#textl , 31) |, so R2 corresponds to the second appearance of cat

BODY

R1 R2
#text1

“M breath smells Iikood.”

Figure 8.9 DOM with Range content outlined with ovals

Doing an insert of a new text node containing the string monster at [(#textl , 6)] produces the
following:

R1 =[(#textl , 3), (#textl , 6)], so R1 corresponds to the first appearance of cat
R2 =[(#textl , 6), (#textl , 6)], so R2 corresponds to a point between #textl and #text2

88

BODY

#text] | Htext? #text3

& A

‘M @" “‘monster’ | “s breath smells like cat food.”

R1R2

Figure 8.10 with Range content outlined with ovals after insertion

Now there are three text nodes that are consecutive children of <body>:

#textl iS My cat
#text2 1S monster
#text3 1S ' s breath smells like cat food.

Note that #text1 has not been replaced with a new node with different text. Instead, the value of
#text]l has been changed to the new text. Whether #text1l should be mutated or replaced is not
specified by the DOM specification; however, Firefox implements the specification by mutating
the first node.

In this case, we want R2 to point to a node that did not exist before the insertion was made. Note
that in this case, R2 satisfies the original requirements for changing its boundary point, in that the
offset of the insertion point is strictly less than the startpoint for R2; however, the update for R2
still fails to change R2 in such a way that it still selects the same portion of the document. Again,
since the original selection for R2 is now at [(#text3 , 22), (#text3, 25)], this suggests that the
rules for updating Ranges after mutation can be improved upon even further to accommodate
nodes that are created as a result of insert(). To this end, Chickenfoot uses the following policy
for updating Range boundary-points upon insertion, in addition to the DOM 2 policy:

If an insertion point lies within a text node, consider all Ranges in the document tree that have
a boundary-point whose container is equal to the text node. If the boundary-point is before or
equal to the insertion point, then both the container for the start or end (depending on the type
of boundary point) will be changed to the new text node that was created, and the offset will be
changed to (oldOffset — oldNode.nodeValue.length).

To implement these policies, Chickenfoot needs to know about every Range that has been
created in the DOM, and to update each one whenever a node is removed or inserted. Section
8.3.1 already explained how these mutation events can be captured, but getting a reference to all
of the Ranges is still a problem.

Because the only way to create a Range in the DOM is to call its createRange method,
Chickenfoot replaces this method with one that delegates to the original method to create the

89

Range, but then keeps a reference to it before it is returned to the client. This collection of
references is stored so that a Range can be looked up in constant time when the node for either of
its boundary-points is mutated. When a mutation occurs, potentially affected Ranges are
inspected, and the Chickenfoot policies for Range modification under document mutation are
applied, if necessary.

8.4 How Chickenfoot Scripts are Interpreted

Firefox renders the DOM to produce the graphical view of the web page that the end user sees.
Any change to the underlying DOM is reflected immediately in the rendered view of the web
page, so Chickenfoot scripts effectively work by manipulating the DOM.

In Firefox (and in most browsers), users can manipulate the DOM in JavaScript through an
object named document. Chickenfoot builds upon this DOM access by creating an extended
JavaScript environment called an evaluation context in which Chickenfoot scripts are evaluated.
In this way, a Chickenfoot script can have access to all of the objects and functions that a
JavaScript programmer is accustomed to having, in addition to the higher-level objects and
functions that Chickenfoot provides. This is accomplished by taking the text of a Chickenfoot
script as a string and evaluating it inside of the evaluation context by using the with and eval
functions in JavaScript:

// the variable, script, passed to this function
// is the source code of the user's script as a string
function interpret (script) {

// This is the evaluation context for the script.

// Familiar objects, such as document, are defined here,
// 1in addition to Chickenfoot commands,

// such as find() and click().

evaluationContext = {
document getter : function() { return getDoc(); 1},
find : function (pattern) { ... },
click : function (pattern) { ... },

}i

// this evaluates the script in the evaluation context
with (evaluationContext) {
eval (script);

}

Though the use of with in JavaScript is frowned upon because it is often misused [33], it is used
appropriately in Chickenfoot. Misuse occurs when the client tries to assign a value to a non-
existent field to the object added to the scope chain by with:

var x = { a : 2 }
with (x) {
this.a = 3
this.b = 4 // b 1s not defined in x, so this has no effect

90

}

alert(x.a + x.b) // displays NaN because x.b is undefined

In the code above, x.a is changed from 2 to 3, but b is not added as a field of x, as the user might
expect. Because b was not defined in x before the with statement, its assignment inside the with
statement has no effect. In Chickenfoot, this is not a concern because the with statement is not
used to assign values to evaluationContent; instead, it is used to run user code in an
environment where Chickenscratch commands are in scope, which it does as desired.

8.5 Monitoring Page Loads

It is important to keep track of when web pages are loading in Firefox so that Chickenfoot does
not try to operate on partially-loaded pages. This section explains how page loads are monitored,
and how Chickenfoot uses this information to suspend an operation until a page has finished
loading.

8.5.1 Listening for Load Events

Firefox provides a ProgressListener interface that is notified upon updates to the progress bar:
this includes the beginning and end of a page load, including some intermediary updates about
what percentage of the page has been downloaded thus far. There is also a LoadListener interface
that is notified when a page is completely loaded into the browser. Unfortunately, the
ProgressListener reaching 100% does not precisely coincide with a load event because Firefox
takes some additional time to finish processing the HTML after it has received all of the bytes
from the server.

A web page in Firefox is displayed inside a tab, and Chickenfoot keeps track of the loading state
of each tab in the browser. First, it registers with Firefox as ProgressListener and a LoadListener.
When it receives a STATE_START event from the ProgressListener, it checks the event to see
which tab triggered it, and marks that tab as loading. When it receives a LOAD event from the
LoadListener, it also checks the event to see which tab triggered it, and marks that tab as loaded.

8.5.2 Waiting Until a Load is Complete

In the current implementation of Chickenfoot, all accesses to a web page go through the
document object. In the evaluation context described in section 8.4, document is a reference to a
function that returns an object that wraps the DOM rather than returning a reference to the DOM
itself. By making document a function, Chickenfoot can suspend itself until the DOM has
finished loading. This is completely abstracted from the user.

When document is called, it asks the browser which tab is currently in focus. Once it finds that
tab, it asks it which state it is in. If it is in the loaded state, then it returns the tab's DOM
immediately. Otherwise, the tab is in the loading state, so the tab is polled in 100ms intervals
until it is loaded, at which point the DOM is returned.

Using this approach, a Chickenfoot script can fire commands that start loading pages, and the
script can continue executing in parallel with the loads until it reaches a point where it tries to

91

access a page that is in the middle of loading. When that happens, the script will suspend
execution until the load is complete, and will resume when the page is loaded. This allows end-
users to write scripts without having to worry about this synchronization.

8.5.3 Using Page Loads for URL Triggers

Because Chickenfoot is receiving LOAD events, it uses these events to fire URL triggers. Upon
receiving a LOAD event, Chickenfoot looks through the list of URL triggers that the user has
defined. For each one, it tries to match the URL of the page that has been loaded against the
trigger's URL pattern. If the loaded page matches the regexp for the URL pattern, then it runs the
script associated with the trigger.

92

93

Chapter 9 Conclusion

Chickenfoot is a web automation toolkit designed to make it easy for end-users to develop scripts
to change their web experience: its command language abstracts the underlying representation of
a web page so that users can operate on it at high level, its development environment is
conducive to experimentation so scripts can be prototyped quickly, and its trigger system makes
it possible to seamlessly integrate user customizations into everyday browsing.

9.1 Contributions

In this thesis, I have introduced a system, Chickenfoot, that empowers end-user programmers to
automate and customize web pages without viewing their HTML source. I have done this by
integrating programming and pattern languages that are focused on describing commands and
objects relevant to interactions with web pages.

As part of Chickenfoot's language, Chickenscratch, I have introduced keyword patterns, which
are patterns that use the spatial location of keywords in a web page to identify page elements.
The web survey data that I provide supports the usability of this technique. I have also presented
an algorithm for resolving keyword patterns, and have demonstrated its success on a modest
amount of training data.

By embedding Chickenfoot in the Firefox web browser, I have created a development
environment that encourages experimentation and spontaneity in web scripting. My environment
provides tools that help the user create and debug Chickenscratch code. As a side-effect, I have
also created an application for developing JavaScript programs and extensions to Firefox.

I have introduced the rendered model of a web page, which builds upon the Document Object
Model that most web browsers use. In creating this model, I offer improvements to the W3C

DOM specification for updating Ranges of a DOM under mutation.

Finally, by enabling users to store scripts as triggers, [have given end-user programmers the
ability to automate and customize their web experience.

94

9.2 Future Work

Though the core of the Chickenfoot system has been implemented, there are still many
extensions to the system that we would like to implement.

9.2.1 Packaging Scripts

Package Chickenfoot script as a standalone Firefox extension.

Currently, if a user wishes to run a Chickenfoot script that someone else has created, then he
must get its source code, install Chickenfoot, and run the code. It would be much easier if the
script author could package his script as one file that a user could install and run without
downloading Chickenfoot. For Firefox, the logical thing to do is to package the Chickenfoot
script as its own Firefox extension. As a Firefox extension is bundled as a single XPI file
(pronounced "zippy"), and can be installed by clicking on a hyperlink on a web page, packaging
Chickenfoot scripts as XPIs would make it simpler for script authors to deploy their creations to
users.

A tool was recently created to package Greasemonkey scripts as a XPIs,[34] so it should not be
difficult to create a analogous tool for Chickenfoot. This packaging tool would take a script and a
trigger (which is effectively a URL pattern), and in turn create a Firefox extension that ran the
script whenever the user visited a page that matched the trigger pattern. The extension would
expose the trigger as a setting that could be overridden by the end-user.

Because packaging the script as an extension would not expose the code to the user, Chickenfoot
should also have the ability to read XPI files, so script authors could share code in this way, as
well. This would also make it easier to explore existing Firefox extensions that were created with
tools other than Chickenfoot.

Package Chickenfoot script so it can run as a function on a mobile device.

It is difficult to browse the Web on mobile devices because of the small screen and the absence
of a full keyboard. Despite this, many users want to be able to browse the Web from their cell
phone so they can get driving directions and other information from the Web that is particularly
useful when they are away from their computers. Alex Faaborg, a student at the MIT Media Lab,
notes the following when discussing his own macro recorder for the Web:

I believe that one of the reasons Web browsing doesn't work well on mobile
devices is that users don't want to browse on mobile devices; they want to quickly
and easily retrieve a specific piece of information, or complete a specific action.
One of the benefits of [my] application is that it reduces complex processes on the
Web to their minimum input and output. Users could record a process on the web,
and then copy that process onto their mobile device. . . The process of logging in
and retrieving this information using a full sized computer display can be reduced
to a single click on a cell phone. [35]

It should be possible to package Chickenfoot scripts in the same way, minimizing processes on

the Web to their minimum input and output, so that users can easily do the tasks that are most
important to them on their mobile device, even if general web browsing is difficult.

95

9.2.2 By Demonstration

Make actions logged in the Actions pane on par with those recorded in WebVCR.

The user actions logged in the Actions pane are minimal: only page navigations are recorded in
the current implementation of Chickenfoot. This is unfortunate because a better logging system
would make it possible for users to demonstrate their activity in the browser and copy the content
of the Actions pane rather than trying to compose a script on their own and making errors. This
could help novice users learn the Chickenfoot language, as well.

By taking the approach used in WebVCR, listeners could be added to web forms when a page is
loaded so that all user input could be logged. For example, after a user does a search from the
Google home page, the content of the Actions pane would be:

go('http://www.google.com/")
enter ('search terms')
click ('Google Search')

Duplicating the work of WebVCR to add the listeners is not difficult; however, translating the
actions into appropriate Chickenfoot code is a challenge. Currently, when a user writes a
Chickenfoot script, he provides a keyword pattern that Chickenfoot resolves to a web
component. But to do the converse, that is, to take a web component and create a keyword
pattern for it, is its own research problem. For example, consider the log of a user doing a web
search on Yahoo! instead of Google:

go('http://www.yahoo.com/")
enter (??7?, 'search terms') // what should replace ?27?7?
click ('Search the Web')

Determining how to name the textfield is an open question. "Search the Web" would
probably be the most intuitive name for the user, but "Images" also matches the correct
textfield. Coming up with candidate keyword patterns for a component and choosing the best one
is an open problem for Chickenfoot.

Enable user to discover patterns by selecting content in a web page.

Some patterns are difficult or tedious for a user to define in Chickenfoot. For example, a
reasonable attempt at a LAPIS pattern for a Google search result is: paragraph just
before hostname. But coming up with this pattern may require the user to do some
prolonged experimentation in the Patterns pane; and further, this pattern does not even reliably
match Google search results. Rather than go through the process of trial-and-error, it would be
quicker for a user to select an example of a Google search result in the page and have LAPIS
suggest patterns to the user. LAPIS already supports pattern-suggestion in the standalone
version, so it is simply a matter of porting this functionality over to Chickenfoot.

Build a programming-by-demonstration (PBD) system on top of Chickenfoot.

As Chickenfoot is targeted at end-user programmers, it would be even easier for novice
programmers to learn if they did not have to write any code at all! This could be done by adding
functionality to Chickenfoot to make it behave like a macro recorder, such as WebVCR or

96

LiveAgent, where the user explicitly records the task they would like to automate. However, a
more interesting system would be one that could data mine the history of a user's web activity for
usage patterns, and then suggest and write scripts that would automate actions that the user
appeared to do often.

Automatic discovery of web services.

Web pages are subject to change in ways that break Chickenfoot scripts. On the other hand, web
services are stable APIs that are unlikely to change. Sites such as Amazon and Google provide
web services that allow users to make programmatic queries that are equivalent to the ones that
they do by filling out web forms on the same site.

It would be helpful if Chickenfoot could examine the history of queries that a user made to a web
site, and their results, and then compare them to the results of doing the same queries through the
site's web services. If it found a match, then it could create a Chickenfoot function that abstracted
the SOAP calls to the web service. This would give the user reliable programmatic access to the
information that he wants.

Such a system could be implemented by using UDDI [36] to find out if a site provides web
services. Once it discovered the web services, it could use a brute-force approach, trying the
user's inputs on each service the site provides and comparing the web service output to the
content the user sees in a web page when he does the same query. This approach may not be
efficient, but it suggests that a solution is possible.

9.2.3 User Interface

Provide a graphical view of a Chickenfoot script.

For commands that deal with automating web forms, it would be helpful for users to be able to
see the component that the command would affect. For example, displaying the button or
hyperlink that would be matched by the Pattern argument to a ¢1ick command would help
users predict the effects of running their script. Also, in the event that a web page changed so that
the Pattern now matched a different link or button, the user would be more likely to notice the
change before running the script because he would see that the image of the component had
changed.

Provide a Chickenfoot interpreter or multiple editors.

When users are developing a script in Chickenfoot, there is often a portion of the script that the
user has completed as well as a portion of the script that the user is experimenting with.
Unfortunately, there is only one editor, so both portions of the script are in the same buffer and
the user is frequently commenting and uncommenting portions of the script. The user should be
able to have separate space for code that is working and code that is under development.

One approach is the one employed by StarLLogo [37], which is a programming environment for
creating simulations that is aimed at middle school students. Its editor is split into a top and
bottom pane where the top pane is a StarLogo interpreter and the bottom pane contains functions
that the user has created. This allows the user to experiment in the top pane and move completed
code into the bottom pane.

97

Another solution would be to have a tabbed pane of Chickenfoot editors instead of only one
editor. This way, the user could have more control over how he broke up his code. One drawback
of this design, however, is that the user would not be able to view code from more than one
editor simultaneously.

In either case, sufficient prototyping and user testing should be done to determine how the
interface could provide better support for script development.

Support Bookmark Triggers.

One of the major uses of Chickenfoot is to automate navigation, especially to "hard to reach"
pages. As users use bookmarks to automatically take them to a page, they should be able to
access Chickenfoot scripts from the Bookmarks menu that do that, as well. Bookmarks that are
Chickenfoot scripts should appear the same as other bookmarks in the browser to provide
seamless integration.

9.2.4 Robustness

Attempt to identify when a script breaks as a result of a change in a web site.

A Chickenfoot script may suddenly stop working if a web site changes such that a Chickenfoot
pattern no longer becomes valid. In this case, it would be ideal if Chickenfoot could recognize
the error and alert the user to fix it (or even fix the script itself) rather than failing silently or
ploughing along ignoring the error, ultimately returning the wrong result.

One solution would be to store the XPath of each component identified by a pattern in a
Chickenfoot script. When the script is run subsequently, Chickenfoot could calculate the tree edit
distance between the XPath of the component currently identified by the script and the XPath of
the component identified by the script the last time that the script was run. If the tree edit
distance exceeds a certain threshold, then the script should abort and warn the user that it
believes that the pattern used to identify the component may no longer be valid.

9.2.5 Extensions to Pattern Language

Support CSS patterns.

Because Chickenfoot users should be able to talk about the page on the rendered level, they
should also be able to use colors and other CSS styles to identify parts of a web page. For
example, "green text with black background" should be a valid pattern for matching text. As the
DOM has references to style sheets and style data for its elements, it should be possible to
programatically resolve CSS patterns with the elements the user is trying to identify.

Support above and below as relational operators.

Users should be able to use above and below as operators in the pattern language. For example,
a user should be able to use image above textbox to identify the logo on the Google home
page. Even though above and below are not constraints that can be applied to the string model as
other TCs can, they should be adopted as part of the TC pattern language so their usage is
consistent with other relational operators, such as just before and containing.

Let users define patterns.

98

In LAPIS, users are able to define their own patterns in terms of the existing pattern language.
This functionality should be made available through Chickenfoot's interface. Care must be taken
so that users who share scripts that use patterns they have defined will be sure to deploy their
user-defined patterns with the script.

9.2.6 Extensions to Command Language

Provide a simpler idiom for iterating over Match objects.
The following syntax for iterating over Matches would be simpler for users to read and to write:

for (m in find(pattern)) {
// use m

}

Unfortunately, JavaScript interpreters only support this syntax for enumerating keys in an
associative array. Because only strings can be keys, it is impossible to use this syntax for
enumerating over any other type. This presents a problem for Chickenfoot because the desired
syntax shown above is intended to enumerate Mat ch objects, not string objects. However, this
problem can be solved by rewriting every instance of this:

for (A in B) {
}
as this:

var b = B
if (b instanceof Match) {
for (A = b; A.hasMatch; A = A.next) {

}
} else {
for (A in b) {

}
}

before passing the script to the JavaScript interpreter. This rewriting would most likely have to
be performed on the abstract syntax tree (AST) of a script, which unfortunately is not exposed by
the Firefox JavaScript interpreter. Rhino [38] is an open-source JavaScript-1.5-compliant
interpreter written in Java that provides access to the AST, so hopefully it can be incorporated
into Chickenfoot to perform this translation.

Enable users to tag semantic web data and refer to ontologies in Chickenfoot scripts.

If a web page contains semantic web data, then that data should be accessible and scriptable with
Chickenfoot. In general, semantic web data will be a more reliable wrapper for information in a
page than a Chickenfoot pattern will, so giving Chickenfoot users access to this wrapped data
will enable them to write more reliable scripts. Rather than creating a new system for detecting
and processing semantic web data in a page, Chickenfoot should be integrated with an existing
system, most likely Piggy-Bank [39].

99

Reduce the amount of quoting used in Chickenfoot scripts.

Chickenfoot scripts often contain many quote characters because keyword and TC patterns
appear frequently. Users also construct HTML content from strings, which must be quoted, and
the HTML content often contains quotes, as well. This can make it difficult to read and write
Chickenfoot scripts. Ideally, quotes would only have to be used to delimit a string when string
boundaries are ambiguous.

Add support for other forms of input and output.

Users may want to read or write data from files or databases as part of a Chickenfoot script.
Though this is possible to do by scripting XPCOM objects provided by Firefox, the interfaces for
these objects are not appropriate for end-user programmers, so they should be wrapped by
appropriate, built-in Chickenfoot commands.

9.2.7 Evaluation

Have a ''bake-off'' between Greasemonkey and Chickenfoot.

Chickenfoot has not been tested in a formal user study to see how it compares to other web
automation tools. Because Greasemonkey is also a Firefox extension that enables users to
automate and customize the Web by writing JavaScript code, it is an appropriate tool to use for
comparison against Chickenfoot. Running a "bake-off" study in which users are given the same
set of tasks, some using Chickenfoot and some using Greasemonkey, would provide an estimate
on how much of an advantage the Chickenfoot language and development environment provide,
if any.

Use data from the Wayback Machine to test how robust Chickenfoot scripts are over time.
The Internet Archive Wayback Machine [40] is a collection of 40 billion web pages archived
from 1996 onward. It allows users to view a web site at different points in time over the course
of its history. Chickenfoot scripts could be written to automate early versions of a web site, and
then could be tested to see if they still worked as the web site changed. This could also be done
by scripts developed in other toolkits to serve as a basis for comparison of the robustness of
Chickenfoot scripts.

100

101

Appendix A Chickenscratch Reference

The following predefined objects and functions are available in Chickenscratch.

Standard JavaScript functions:

back ()
forward()

Standard JavaScript objects:

window
document
location
frames
history
screen
status
top
navigator

Chickenscratch pattern functions:

find
before
after

Chickenscratch web form functions:

click
enter
check
uncheck
pick

102

Chickenscratch navigation functions:

go

fetch
openTab
selectTab
closeTab

Chickenscratch page mutation functions:

insert
remove
replace

Chickenscratch editor functions:

output
clear

Miscellaneous functions:
sleep

Chickenfoot objects:
Match

Chickenfoot types:

Pattern
Position

Appendix B Partitioning HTML Tags

This is the list of HTML tags that are considered partitioning (Section 7.1) in the keyword

pattern algorithm:

<A>

<ABBR>
<ACRONYM>
<ADDRESS>
<APPLET>
<AREA>

<BASE>
<BASEFONT>
<BDO>
<BIG>
<BLOCKQUOTE>
<BODY>

<BUTTON>
<CAPTION>
<CENTER>
<CITE>
<CODE>
<COL>
<COLGROUP>
<DD>

<DFN>
<DIR>
<DIV>

<DL>

<DT>

<FIELDSET>

<FORM>
<FRAME>
<FRAMESET>
<H1>

<H2>

<H3>

<H4>

<H5>

<H6>
<HEAD>
<HR>
<HTML>

<I>
<IFRAME>

<INPUT>
<INS>
<ISINDEX>
<KBD>
<LABEL>
<LEGEND>

<LINK>
<MAP>
<MENU>
<META>
<NOFRAMES>
<NOSCRIPT>
<OBJECT>

<OPTGROUP>

<OPTION>
<p>
<PARAM>
<PRE>
<Q>

<S>
<SAMP>
<SCRIPT>
<SELECT>
<SMALL>

<STRIKE>

<STYLE>

<SUB>
<SUP>
<TABLE>
<TBODY>
<TD>
<TEXTAREA>
<TFOOT>
<TH>
<THEAD>
<TITLE>
<TR>
<TT>
<U>

<VAR>

Bibliography

[1] Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J., and Wallace, C. "End-user
software engineering with assertions in the spreadsheet paradigm." Proc. ICSE, 2003.

[2] W3C. "Document Object Model (DOM)." www.w3.org/DOM/.
[3] JavaScript 1.5. www.mozilla.org/js/js15.html.

[4] Microsoft. "Smart Tags and Smart Documents."
msdn.microsoft.com/office/understanding/smarttags/default.aspx

[5] Sugiura, A. and Koseki, Y. "Internet Scrapbook: Automating web browsing tasks by
demonstration." Proc. UIST '98.

[6] Miller, R.C. and Bharat, K. "SPHINX: a Framework for Creating Personal, Site-Specific
Web Crawlers." Proc. WWW7, 1998.

[7] Fujima, J., Lunzer, A., Hornbaek, K., Tanaka, Y. "Clip, connect, clone: combining
application elements to build custom interfaces for information access." Proc UIST 2004.

[8] Kistler, T. and Marais, H. "WebL — a programming language for the Web." Proc. WWW?7,
1998.

[9] Perl. www.perl.com/
[10] Mech. search.cpan.org/~petdance/WWW-Mechanize-1.12/lib/WWW/Mechanize.pm

[11] Anupa, V., Freire, J., Kumar, B., and Lieuwen, D. "Automating web navigation with the
WebVCR." Proc. WWW9, 2000.

[12] Krulwich, B. "Automating the Internet: Agents as User Surrogates." IEEE Internet
Computing, vl n4 (July/August 1997).

[13] Barret, R., Maglio P., and Kellem, D. "How to Personalize the Web." CHI, 1997.
[14] Ekiwi, LLC. screen-scraper: solutions for web data extraction. www.screen-scraper.com/
[15] Boodman, A. "Greasemonkey." http://greasemonkey.mozdev.org/.

[16] Chickenfoot. www.bolinfest.com/chickenfoot/.

104

[17] Miller, R.C. and Myers, B.A. "Integrating a Command Shell into a Web Browser." Proc.
USENIX, 2000.

[18] LiveConnect. http://www.mozilla.org/js/liveconnect/.
[19] Friedl, J. Mastering Regular Expressions. O'Reilly, 2002.
[20] Regular Expression Library. http://www.regexlib.com/Search.aspx 7k=email

[21] Screen-Scraper extractor patterns. www.screen-scraper.com/support/docs/
using_extractor_patterns.php

[22] W3C. "XML Path language (XPath) Version 1.0," 1999.
[23] GreaseMonkeyUserScripts. http://dunck.us/collab/GreaseMonkeyUserScripts/
[24] Webber, Matthew. "Automatic Web Page Concatenation." MIT AUP, 2005.

[25] Rha, Philip. "Detecting and Parsing Embedded Lightweight Structure." MIT MEng Thesis,
2005.

[26] Karger, et al. Haystack project. http://haystack.csail.mit.edu/

[27] Mozilla. "XML User Interface Language (XUL) Project."”
http://www.mozilla.org/projects/xul/

[28] Aasted, H. and Palant, W. Adblock. http://adblock.mozdev.org/

[29] Navarro, Gonzalo. "A guided tour to approximate string matching." CSUR, v33 nl (March
2001).

[30] W3C. "XHTML 2.0," 2004.

[31] Document Object Model Range. http://www.w3.org/TR/DOM-Level-2-Traversal-
Range/ranges.html

[32] Document Object Model Range diagram. http://www.w3.org/TR/DOM-Level-2-Traversal-
Range/ranges.html#Level-2-Range-Position

[33] Flanagan, D. JavaScript: The Definitive Guide. O'Reilly, 2001.

[34] Holovaty, Adrian. "Greasemonkey compiler."
http://www.holovaty.com/blog/archive/2005/04/24/2227

[35] Faaborg, Alex. 6.831 Final Report, 2004.

105

[36] UDDL. http://www.uddi.org/

[37] StarLogo. http://education.mit.edu/starlogo/

[38] Mozilla. "Rhino: JavaScript for Java." http://www.mozilla.org/rhino/.

[39] Hyunh, David. "Piggy-Bank." http://simile.mit.edu/piggy-bank/index.html

[40] Wayback Machine. http://www.waybackmachine.org/.

106

